
    ih>=                       d Z ddlmZ ddlZddlmZ ddlmZmZm	Z	m
Z
mZmZmZmZmZmZmZ ddlmZ ddlmZ ddlmZmZ dd	lmZmZmZmZmZmZm Z m!Z!m"Z"m#Z#m$Z$m%Z% dd
l&m'Z'm(Z( ddl)m*Z*m+Z+m,Z, ddl-m.Z.m/Z/m0Z0 ddl1m2Z2m3Z3 ddl4m5Z5 ddl6m7Z7m8Z8m9Z9m:Z:m;Z; ddl<m=Z=  ede7      Z>eee?ef   ee>   ef   Z@eee>f   ZA ej                  eC      ZDddZE G d de      ZFy)zWrapper around Perplexity APIs.    )annotationsN)
itemgetter)AnyDictIteratorListLiteralMappingOptionalTupleTypeTypeVarUnion)CallbackManagerForLLMRun)LanguageModelInput)BaseChatModelgenerate_from_stream)	AIMessageAIMessageChunkBaseMessageBaseMessageChunkChatMessageChatMessageChunkFunctionMessageChunkHumanMessageHumanMessageChunkSystemMessageSystemMessageChunkToolMessageChunk)JsonOutputParserPydanticOutputParser)ChatGenerationChatGenerationChunk
ChatResult)RunnableRunnableMapRunnablePassthrough)from_envget_pydantic_field_names)is_basemodel_subclass)	BaseModel
ConfigDictFieldTypeAdaptermodel_validator)Self_BM)boundc                <    t        | t              xr t        |       S N)
isinstancetyper*   )objs    h/var/www/html/dev/engine/venv/lib/python3.12/site-packages/langchain_community/chat_models/perplexity.py_is_pydantic_classr9   :   s    c4 ?%:3%??    c                     e Zd ZU dZdZded<   dZded<   	 dZd	ed
<   	  ee	      Z
ded<   	  e edd      d      Zded<   	  edd      Zded<   	 dZded<   	 dZded<   	 dZded<   	  ed !      Zed3d"       Z ed#$      ed4d%              Z ed&$      d5d'       Zed6d(       Zd7d)Z	 	 	 	 	 	 d8d*Z	 	 	 	 	 	 d9d+Z	 	 d:	 	 	 	 	 	 	 	 	 d;d,Z	 	 d:	 	 	 	 	 	 	 	 	 d<d-Zed=d.       Zed>d/       Z 	 d?d0ddd1	 	 	 	 	 	 	 	 	 	 	 d@d2Z!y)AChatPerplexitya@  `Perplexity AI` Chat models API.

    To use, you should have the ``openai`` python package installed, and the
    environment variable ``PPLX_API_KEY`` set to your API key.
    Any parameters that are valid to be passed to the openai.create call can be passed
    in, even if not explicitly saved on this class.

    Example:
        .. code-block:: python

            from langchain_community.chat_models import ChatPerplexity

            chat = ChatPerplexity(
                model="llama-3.1-sonar-small-128k-online",
                temperature=0.7,
            )
    Nr   clientz!llama-3.1-sonar-small-128k-onlinestrmodelgffffff?floattemperature)default_factoryDict[str, Any]model_kwargsPPLX_API_KEY)defaultapi_key)rB   aliaszOptional[str]pplx_api_keytimeout)rH   z+Optional[Union[float, Tuple[float, float]]]request_timeout   intmax_retriesFbool	streamingzOptional[int]
max_tokensT)populate_by_namec                
    ddiS )NrI   rE    selfs    r8   
lc_secretszChatPerplexity.lc_secretsl   s    //r:   before)modec           
     `   t        |       }|j                  di       }t        |      D ]M  }||v rt        d| d      ||vst        j                  d| d| d| d       |j                  |      ||<   O |j                  |j                               }|rt        d| d	      ||d<   |S )
z>Build extra kwargs from additional params that were passed in.rD   zFound z supplied twice.z	WARNING! z1 is not a default parameter.
                    zJ was transferred to model_kwargs.
                    Please confirm that z is what you intended.zParameters za should be specified explicitly. Instead they were passed in as part of `model_kwargs` parameter.)	r)   getlist
ValueErrorloggerwarningpopintersectionkeys)clsvaluesall_required_field_namesextra
field_nameinvalid_model_kwargss         r8   build_extrazChatPerplexity.build_extrap   s     $<C#@ 

>2.v, 		;JU" 6*5E!FGG!99!* .L !))34JN
 %+JJz$:j!		;  8DDUZZ\R23 4S T 
 "'~r:   afterc                    	 ddl }	 |j                  | j                  d      | _        | S # t        $ r t        d      w xY w# t
        $ r t        d      w xY w)z?Validate that api key and python package exists in environment.r   NzTCould not import openai python package. Please install it with `pip install openai`.zhttps://api.perplexity.ai)rG   base_urlz`openai` has no `ChatCompletion` attribute, this is likely due to an old version of the openai package. Try upgrading it with `pip install --upgrade openai`.)openaiImportErrorOpenAIrI   r=   AttributeErrorr]   )rV   rm   s     r8   validate_environmentz#ChatPerplexity.validate_environment   s|    			 --))4O ( DK   	? 	  	7 	s   + "A A Ac                b    | j                   | j                  | j                  d| j                  S )z:Get the default parameters for calling PerplexityChat API.)rQ   streamrA   )rQ   rP   rA   rD   rU   s    r8   _default_paramszChatPerplexity._default_params   s5     //nn++
 	
 	
r:   c                :   t        |t              r|j                  |j                  d}|S t        |t              rd|j                  d}|S t        |t
              rd|j                  d}|S t        |t              rd|j                  d}|S t        d|       )N)rolecontentsystemuser	assistantzGot unknown type )r5   r   rv   rw   r   r   r   	TypeError)rV   messagemessage_dicts      r8   _convert_message_to_dictz'ChatPerplexity._convert_message_to_dict   s    g{+$+LLW__ML  /$,IL  .$*wGL
 	 +$/GOOLL  /y9::r:   c                    t        | j                        }|d|v rt        d      ||d<   |D cg c]  }| j                  |       }}||fS c c}w )Nstopz2`stop` found in both the input and default params.)dict_invocation_paramsr]   r~   )rV   messagesr   paramsmmessage_dictss         r8   _create_message_dictsz$ChatPerplexity._create_message_dicts   sf     d--. !UVV!F6NCKLa66q9LLf$$ Ms   Ac                @   |j                  d      }|j                  d      xs d}i }|j                  d      r!t        |d         }d|v r
|d   d|d<   ||d<   |j                  d      r|d   |d<   |dk(  s	|t        k(  rt        |      S |d	k(  s	|t        k(  rt        ||
      S |dk(  s	|t        k(  rt	        |      S |dk(  s	|t
        k(  rt        ||d         S |dk(  s	|t        k(  rt        ||d         S |s	|t        k(  rt        ||      S  ||      S )Nrv   rw    function_callname
tool_callsry   )rw   rz   rw   additional_kwargsrx   function)rw   r   tooltool_call_id)rw   r   )rw   rv   )r[   r   r   r   r   r   r   r   )rV   _dictdefault_classrv   rw   r   r   s          r8   _convert_delta_to_message_chunkz.ChatPerplexity._convert_delta_to_message_chunk   s@    yy ))I&,""$99_% !78M&=+@+H(*f%1>o.99\".3L.Al+6>].??$W55[ M^$C!'EVWWX2D!D%g66Z=4H#H'eFmLLV^}0@@#G%BWXX]&66#G$?? 11r:   c              +    K   | j                  ||      \  }}i ||}t        }|j                  dd        |r||d<    | j                  j                  j
                  j                  d|dd|}d}	|D ]  }
t        |
t              s|
j                         }
t        |
d         dk(  r5|
d   d   }|
j                  dg       }| j                  |d   |      }
|	r|
xj                  d|iz  c_        d	}	|j                  d
      }|t        |      nd }|
j                  }t        |
|      }
|r|j                  |
j                   |
       |
  y w)Nrs   stop_sequencesT)r   rs   choicesr   	citationsdeltaFfinish_reason)r   )r|   generation_info)chunkrT   )r   r   r`   r=   chatcompletionscreater5   r   lenr[   r   r   	__class__r#   on_llm_new_tokentext)rV   r   r   run_managerkwargsr   r   default_chunk_classstream_respfirst_chunkr   choicer   r   r   s                  r8   _streamzChatPerplexity._stream   sw     !% : :8T Jv%F%f%,

8T"'+F#$9dkk&&2299 
"4
39
   	EeT*

5#$)9%a(F		+r2I88w!4E ''K+CC'#"JJ7M5B5N=1TX  #(//'WE,,UZZu,EK-	s   EEc                   | j                   r# | j                  |f||d|}|rt        |      S | j                  ||      \  }}i ||} | j                  j
                  j                  j                  dd|i|}t        |j                  d   j                  j                  d|j                  i      }	t        t        |	      g      S )	N)r   r   r   r   r   r   )r|   )generationsrT   )rP   r   r   r   r=   r   r   r   r   r   r|   rw   r   r$   r"   )
rV   r   r   r   r   stream_iterr   r   responser|   s
             r8   	_generatezChatPerplexity._generate	  s     >>&$,,#@FK +K88 $ : :8T Jv%F%f%64;;##//66XXQWX$$Q'//77*H,>,>?
 ~g'F&GHHr:   c                >    d| j                   i}i || j                  S )z,Get the parameters used to invoke the model.r?   )r?   rt   )rV   
pplx_credss     r8   r   z!ChatPerplexity._invocation_params  s,     TZZ&

 6*5 4 455r:   c                     y)zReturn type of chat model.perplexitychatrT   rU   s    r8   	_llm_typezChatPerplexity._llm_type'  s      r:   json_schema)methodinclude_rawstrictc               t   |dk(  r|t        d      t        |      }|rt        |d      r|j                         }nY|r|j	                         }nFt        |t              r|}n3t        |      j                  dk(  rt        |      }|j                         }| j                  ddid      }	|rt        |      n	t               }
nt        d	| d
      |r^t        j                  t!        d      |
z  d       }t        j                  d       }|j#                  |gd      }t%        |	      |z  S |	|
z  S )aP  Model wrapper that returns outputs formatted to match the given schema for Preplexity.
        Currently, Preplexity only supports "json_schema" method for structured output
        as per their official documentation: https://docs.perplexity.ai/guides/structured-outputs

        Args:
            schema:
                The output schema. Can be passed in as:

                - a JSON Schema,
                - a TypedDict class,
                - or a Pydantic class

            method: The method for steering model generation, currently only support:

                - "json_schema": Use the JSON Schema to parse the model output


            include_raw:
                If False then only the parsed structured output is returned. If
                an error occurs during model output parsing it will be raised. If True
                then both the raw model response (a BaseMessage) and the parsed model
                response will be returned. If an error occurs during output parsing it
                will be caught and returned as well. The final output is always a dict
                with keys "raw", "parsed", and "parsing_error".

            kwargs: Additional keyword args aren't supported.

        Returns:
            A Runnable that takes same inputs as a :class:`langchain_core.language_models.chat.BaseChatModel`.

            | If ``include_raw`` is False and ``schema`` is a Pydantic class, Runnable outputs an instance of ``schema`` (i.e., a Pydantic object). Otherwise, if ``include_raw`` is False then Runnable outputs a dict.

            | If ``include_raw`` is True, then Runnable outputs a dict with keys:

            - "raw": BaseMessage
            - "parsed": None if there was a parsing error, otherwise the type depends on the ``schema`` as described above.
            - "parsing_error": Optional[BaseException]

        r   zIschema must be specified when method is not 'json_schema'. Received None.model_json_schema_TypedDictMetaschema)r6   r   )response_format)pydantic_objectzSUnrecognized method argument. Expected 'json_schema' Received:                    ''rawc                     y r4   rT   _s    r8   <lambda>z7ChatPerplexity.with_structured_output.<locals>.<lambda>      r:   )parsedparsing_errorc                     y r4   rT   r   s    r8   r   z7ChatPerplexity.with_structured_output.<locals>.<lambda>  r   r:   )r   r   )exception_key)r   )r]   r9   hasattrr   r   r5   r   r6   __name__r.   r   bindr!   r    r'   assignr   with_fallbacksr&   )rV   r   r   r   r   r   is_pydantic_schemar   adapterllmoutput_parserparser_assignparser_noneparser_with_fallbacks                 r8   with_structured_outputz%ChatPerplexity.with_structured_output,  sh   ` ]"~ %  "4F!;!g+' #)":":"<#"(--/FD)"(f&&*::%f-")"5"5"7)))$,o#>!  C & %V<%'  XQ  
 /66!%(=8M .44NKK#0#?#?_ $@ $  3'*>>>&&r:   )returnzDict[str, str])rd   rC   r   r   )r   r0   )r   rC   )r|   r   r   rC   )r   List[BaseMessage]r   Optional[List[str]]r   z+Tuple[List[Dict[str, Any]], Dict[str, Any]])r   Mapping[str, Any]r   zType[BaseMessageChunk]r   r   )NN)
r   r   r   r   r   "Optional[CallbackManagerForLLMRun]r   r   r   zIterator[ChatGenerationChunk])
r   r   r   r   r   r   r   r   r   r$   )r   r   )r   r>   r4   )r   zOptional[_DictOrPydanticClass]r   zLiteral['json_schema']r   rO   r   zOptional[bool]r   r   r   z-Runnable[LanguageModelInput, _DictOrPydantic])"r   
__module____qualname____doc__r=   __annotations__r?   rA   r-   r   rD   r(   rI   rK   rN   rP   rQ   r,   model_configpropertyrW   r/   classmethodri   rq   rt   r~   r   r   r   r   r   r   r   rT   r:   r8   r<   r<   >   sZ   $ FC4E34K+#(#>L.>V"' >i#L- =CHIDO@  RK<It/ $J$/L 0 0 (#  $2 '" #* 
 
	%)	%1D	%	4	%2&27M2	2@ %):>	'#' "' 8	'
 ' 
''X %):>	I#I "I 8	I
 I 
I, 6 6     26^' *7!!%^'.^' '	^'
 ^' ^' ^' 
7^'r:   r<   )r7   r   r   rO   )Gr   
__future__r   loggingoperatorr   typingr   r   r   r   r	   r
   r   r   r   r   r   langchain_core.callbacksr   langchain_core.language_modelsr   *langchain_core.language_models.chat_modelsr   r   langchain_core.messagesr   r   r   r   r   r   r   r   r   r   r   r   langchain_core.output_parsersr    r!   langchain_core.outputsr"   r#   r$   langchain_core.runnablesr%   r&   r'   langchain_core.utilsr(   r)   langchain_core.utils.pydanticr*   pydanticr+   r,   r-   r.   r/   typing_extensionsr0   r1   r>   _DictOrPydanticClass_DictOrPydantic	getLoggerr   r^   r9   r<   rT   r:   r8   <module>r      s    % "      > =    Q R R O O C P O "e9%T#s(^T#Y<= c	"			8	$@L'] L'r:   