
    hh                     ,   d Z ddlmc mZ ddlmZ ddlmZ ddlm	Z	 ddl
mZ ddlmZ ddlmZ dd	lmZ d
Zi dddddddddddddddddddddd d!d"d#d$d%d&d'd(d)d*d+d,d-d.d/d0d1d2d3d4Zi dg d5g d6d7d8d9d:dg d;g d<d=d8d9d:dg d>g d?d@d8d9d:dg dAg dBd=d8d9d:dg dCg dDd@d8d9d:dg dEg dFdGd8d9d:dg dHg dIdJd8d9d:dg dKg dLdMd8d9d:dg dNg dOdPd8d9d:dg dQg dRdSd8d9d:dg dTg dUdVd8d9d:d!g dWg dXdYd8d9d:d#g d5g d6d7d8dZd:d%g d[g d\d7d8dZd:d'g d]g d^d=d8dZd:d)g d_g d`d=d8dZd:d+g dag dbd@d8dZd:g dcg ddd@d8dZd:g deg dfdgd8dZd:g dhg didjd8dZd:g dKg dkdMd8dZd:g dQg dRdSd8dZd:g dlg dmdSd8dZd:g dng dodpd8dZd:d4ZdqZddrZddsZddtZdduZ	 	 	 ddvZ	 	 	 	 ddwZddxZddyZ	 	 	 	 	 	 	 	 	 ddzZ ed{d|      	 	 	 	 	 	 	 	 	 dd}       Z ed~d      	 	 	 	 	 	 	 	 	 dd       Z edd      	 	 	 	 	 	 	 	 	 dd       Z  edd      	 	 	 	 	 	 	 	 	 dd       Z! edd      	 	 	 	 	 	 	 	 	 dd       Z" edd      	 	 	 	 	 	 	 	 	 dd       Z# edd      	 	 	 	 	 	 	 	 	 dd       Z$ edd      	 	 	 	 	 	 	 	 	 dd       Z% edd      	 	 	 	 	 	 	 	 	 dd       Z& edd      	 	 	 	 	 	 	 	 	 dd       Z' edd      	 	 	 	 	 	 	 	 	 dd       Z( edd      	 	 	 	 	 	 	 	 	 dd       Z) edd      	 	 	 	 	 	 	 	 	 dd       Z* edd      	 	 	 	 	 	 	 	 	 dd       Z+ edd      	 	 	 	 	 	 	 	 	 dd       Z, edd      	 	 	 	 	 	 	 	 	 dd       Z- edd      	 	 	 	 	 	 	 	 	 dd       Z. edd      	 	 	 	 	 	 	 	 	 dd       Z/ edd      	 	 	 	 	 	 	 	 	 dd       Z0 edd      	 	 	 	 	 	 	 	 	 dd       Z1 edd      	 	 	 	 	 	 	 	 	 dd       Z2 edd      	 	 	 	 	 	 	 	 	 dd       Z3 edd      	 	 	 	 	 	 	 	 	 dd       Z4 edd      	 	 	 	 	 	 	 	 	 dd       Z5ejm                  dìī      e_         ejm                  dŬī      e_         ejm                  dƬī      e _         ejm                  dǬī      e!_         ejm                  dȬī      e"_         ejm                  dɬī      e#_         ejm                  dʬī      e$_         ejm                  dˬī      e%_         ejm                  d̬ī      e&_         ejm                  dͬī      e'_         ejm                  dάī      e(_         ejm                  dϬī      e)_         ejm                  dЬī      e*_         ejm                  dѬī      e+_         ejm                  dҬī      e,_         ejm                  dӬī      e-_         ejm                  dԬī      e._         ejm                  dլī      e/_         ejm                  d֬ī      e0_         ejm                  d׬ī      e1_         ejm                  dجī      e2_         ejm                  d٬ī      e3_         ejm                  dڬī      e4_         ejm                  d۬ī      e5_          edܫ      dd݄       Z7 edޫ      dd߄       Z8e	jp                  j                   e8_         y)zRegNet models for TF-Keras.

References:

- [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678)
  (CVPR 2020)
- [Fast and Accurate Model Scaling](https://arxiv.org/abs/2103.06877)
  (CVPR 2021)
    N)backend)layers)imagenet_utils)training)
data_utils)layer_utils)keras_exportzDhttps://storage.googleapis.com/tensorflow/keras-applications/regnet/x002)@49fb46e56cde07fdaf57bffd851461a86548f6a3a4baef234dd37290b826c0b8@5445b66cd50445eb7ecab094c1e78d4d3d29375439d1a7798861c4af15ffff21x004)@3523c7f5ac0dbbcc2fd6d83b3570e7540f7449d3301cc22c29547302114e4088@de139bf07a66c9256f2277bf5c1b6dd2d5a3a891a5f8a925a10c8a0a113fd6f3x006)@340216ef334a7bae30daac9f414e693c136fac9ab868704bbfcc9ce6a5ec74bb@a43ec97ad62f86b2a96a783bfdc63a5a54de02eef54f26379ea05e1bf90a9505x008)@8f145d6a5fae6da62677bb8d26eb92d0b9dfe143ec1ebf68b24a57ae50a2763d@3c7e4b0917359304dc18e644475c5c1f5e88d795542b676439c4a3acd63b7207x016)@31c386f4c7bfef4c021a583099aa79c1b3928057ba1b7d182f174674c5ef3510@1b8e3d545d190271204a7b2165936a227d26b79bb7922bac5ee4d303091bf17ax032)@6c025df1409e5ea846375bc9dfa240956cca87ef57384d93fef7d6fa90ca8c7f@9cd4522806c0fcca01b37874188b2bd394d7c419956d77472a4e072b01d99041x040)@ba128046c588a26dbd3b3a011b26cb7fa3cf8f269c184c132372cb20b6eb54c1@b4ed0ca0b9a98e789e05000e830403a7ade4d8afa01c73491c44610195198afex064)@0f4489c3cd3ad979bd6b0324213998bcb36dc861d178f977997ebfe53c3ba564@3e706fa416a18dfda14c713423eba8041ae2509db3e0a611d5f599b5268a46c4x080)@76320e43272719df648db37271a247c22eb6e810fe469c37a5db7e2cb696d162@7b1ce8e29ceefec10a6569640ee329dba7fbc98b5d0f6346aabade058b66cf29x120)@5cafc461b78897d5e4f24e68cb406d18e75f31105ef620e7682b611bb355eb3a@36174ddd0299db04a42631d028abcb1cc7afec2b705e42bd28fcd325e5d596bfx160)@8093f57a5824b181fb734ea21ae34b1f7ee42c5298e63cf6d587c290973195d2@9d1485050bdf19531ffa1ed7827c75850e0f2972118a996b91aa9264b088fd43x320)@91fb3e6f4e9e44b3687e80977f7f4412ee9937c0c704232664fc83e4322ea01e@9db7eacc37b85c98184070e1a172e6104c00846f44bcd4e727da9e50d9692398y002)@1e8091c674532b1a61c04f6393a9c570113e0197f22bd1b98cc4c4fe800c6465@f63221f63d625b8e201221499682587bfe29d33f50a4c4f4d53be00f66c0f12cy004)@752fdbad21c78911bf1dcb8c513e5a0e14697b068e5d9e73525dbaa416d18d8e@45e6ba8309a17a77e67afc05228454b2e0ee6be0dae65edc0f31f1da10cc066by006)@98942e07b273da500ff9699a1f88aca78dfad4375faabb0bab784bb0dace80a9@b70261cba4e60013c99d130cc098d2fce629ff978a445663b6fa4f8fc099a2bey008)@1b099377cc9a4fb183159a6f9b24bc998e5659d25a449f40c90cbffcbcfdcae4@b11f5432a216ee640fe9be6e32939defa8d08b8d136349bf3690715a98752ca1y016)@b7ce1f5e223f0941c960602de922bcf846288ce7a4c33b2a4f2e4ac4b480045b@d7404f50205e82d793e219afb9eb2bfeb781b6b2d316a6128c6d7d7dacab7f57)@6a6a545cf3549973554c9b94f0cd40e25f229fffb1e7f7ac779a59dcbee612bd@eb3ac1c45ec60f4f031c3f5180573422b1cf7bebc26c004637517372f68f8937)@98d00118b335162bbffe8f1329e54e5c8e75ee09b2a5414f97b0ddfc56e796f6@b5be2a5e5f072ecdd9c0b8a437cd896df0efa1f6a1f77e41caa8719b7dfcb05d)@65c948c7a18aaecaad2d1bd4fd978987425604ba6669ef55a1faa0069a2804b7@885c4b7ed7ea339daca7dafa1a62cb7d41b1068897ef90a5a3d71b4a2e2db31a)@7a2c62da2982e369a4984d3c7c3b32d6f8d3748a71cb37a31156c436c37f3e95@3d119577e1e3bf8d153b895e8ea9e4ec150ff2d92abdca711b6e949c3fd7115d)@a96ab0d27d3ae35a422ee7df0d789069b3e3217a99334e0ce861a96595bc5986@4a6fa387108380b730b71feea2ad80b5224b5ea9dc21dc156c93fe3c6186485c)@45067240ffbc7ca2591313fee2f80dbdda6d66ec1a7451446f9a6d00d8f7ac6e@ead1e6b568be8f34447ec8941299a9df4368736ba9a8205de5427fa20a1fb316)@b05e173e4ae635cfa22d06392ee3741284d17dadfee68f2aa6fd8cb2b7561112@cad78f74a586e24c61d38be17f3ae53bb9674380174d2585da1a526b8c20e1fd)y032y040y064y080y120y160y320)   rR         )   8      ip        X)depthswidthsgroup_widthdefault_size
block_type)rR      rT      )    @      i     )rR         rT   )0   `      i  rU   )rR   rf   rT   rg   )rc           )r`   rS   
   r`   )H      i  i  )r`         r`   )ri      i  i  rh   )r`   rg      r`   )P   rj   i0  iP  (   )r`   rS   rn   rR   )rp   i  i  iX  rV   )r`   rg   rr   rR   )ru   rj   i  i  x   )r`   rg      rR   )rY       i  p   )r`   rq      rR   )      rz   i   rk   )r`   rT   r|   rR   )P  rm   i@  i	  rp   Y)rR   rf   rq   rq   )rh   h      i  )rR   rf   rT   rS   )rh   r{   r}   i`  )rR   rf   rX   r`   )rc   rk   i@  i   )r`   rq      r`   )rh   rw   r   ix  )r`   rg   r|   rR   )ro      @  i  )r`   rq   ra   r`   )rk   rs   r~   i@  rc   )r`   rT   rt   r`   )   rl   r   i  ro   )rp   ry   rz   i  )r`   rS   rx   rR   )rY   ry   i  i  )r`   rg   ra   rR   )   i  ip  i  r   a
  Instantiates the {name} architecture.

  Reference:
    - [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678)
    (CVPR 2020)

  For image classification use cases, see
  [this page for detailed examples](
  https://keras.io/api/applications/#usage-examples-for-image-classification-models).

  For transfer learning use cases, make sure to read the
  [guide to transfer learning & fine-tuning](
    https://keras.io/guides/transfer_learning/).

  Note: Each TF-Keras Application expects a specific kind of input
   preprocessing. For Regnets, preprocessing is included in the model using a
  `Rescaling` layer. RegNet models expect their inputs to be float or uint8
  tensors of pixels with values in the [0-255] range.

  The naming of models is as follows: `RegNet<block_type><flops>` where
  `block_type` is one of `(X, Y)` and `flops` signifies hundred million
  floating point operations. For example RegNetY064 corresponds to RegNet with
  Y block and 6.4 giga flops (64 hundred million flops).

  Args:
    include_top: Whether to include the fully-connected
        layer at the top of the network. Defaults to `True`.
    weights: One of `None` (random initialization),
          `"imagenet"` (pre-training on ImageNet), or the path to the weights
          file to be loaded. Defaults to `"imagenet"`.
    input_tensor: Optional TF-Keras tensor
        (i.e. output of `layers.Input()`)
        to use as image input for the model.
    input_shape: Optional shape tuple, only to be specified
        if `include_top` is False.
        It should have exactly 3 inputs channels.
    pooling: Optional pooling mode for feature extraction
        when `include_top` is `False`.
        - `None` means that the output of the model will be
            the 4D tensor output of the
            last convolutional layer.
        - `avg` means that global average pooling
            will be applied to the output of the
            last convolutional layer, and thus
            the output of the model will be a 2D tensor.
        - `max` means that global max pooling will
            be applied.
        Defaults to `None`.
    classes: Optional number of classes to classify images
        into, only to be specified if `include_top` is True, and
        if no `weights` argument is specified. 1000 is how many
        ImageNet classes there are. Defaults to `1000`.
    classifier_activation: A `str` or callable. The activation function to use
        on the "top" layer. Ignored unless `include_top=True`. Set
        `classifier_activation=None` to return the logits of the "top" layer.
        When loading pretrained weights, `classifier_activation` can only
        be `None` or `"softmax"`. Defaults to `"softmax"`.

  Returns:
    A `keras.Model` instance.
c                 X      !dt        t        j                  d            z     fd}|S )zRescales and normalizes inputs to [0,1] and ImageNet mean and std.

    Args:
      name: name prefix

    Returns:
      Rescaled and normalized tensor
    prestemc                 H     t        j                  ddz         |       } | S )Ngp?_prestem_rescaling)scalename)r   	Rescalingxr   s    ^/var/www/html/dev/engine/venv/lib/python3.12/site-packages/tf_keras/src/applications/regnet.pyapplyzPreStem.<locals>.apply  s1    
FD+?$?

     strr   get_uidr   r   s   ` r   PreStemr   ~  s.     |3wy9:: Lr   c                 X      !dt        t        j                  d            z     fd}|S )zImplementation of RegNet stem.

    (Common to all model variants)
    Args:
      name: name prefix

    Returns:
      Output tensor of the Stem
    stemc                      t        j                  dddddddz         |       }  t        j                  d	d
dz         |       }  t        j                  dz         |       } | S )Nrb   rf   rf   r`   Fsame	he_normal
_stem_conv)stridesuse_biaspaddingkernel_initializerr   ?h㈵>_stem_bnmomentumepsilonr   
_stem_relur   )r   Conv2DBatchNormalizationReLUr   s    r   r   zStem.<locals>.apply  s    
FMM*$
 
F%%$TJ->

 2FKKTL01!4r   r   r   s   ` r   Stemr     s.     |GOOF344  Lr   c                 Z     t        t        j                  d             fd}|S )zImplements the Squeeze & Excite block (https://arxiv.org/abs/1709.01507).

    Args:
      filters_in: input filters to the block
      se_filters: filters to squeeze to
      name: name prefix

    Returns:
      A function object
    squeeze_and_excitec           	          t        j                  dz   d      |       } t        j                  ddddz         |      } t        j                  dd	dd
z         |      }t        j                  j                  ||       }|S )N_squeeze_and_excite_gapT)r   keepdimsrR   rR   relur   _squeeze_and_excite_squeeze)
activationr   r   sigmoid_squeeze_and_excite_excite)r   GlobalAveragePooling2Dr   tfmathmultiply)inputsr   
filters_inr   
se_filterss     r   r   z$SqueezeAndExciteBlock.<locals>.apply  s    
F))11D


FMM*55
 
FMM *44
  GGQ'r   r   )r   r   r   r   s   ``` r   SqueezeAndExciteBlockr     s*     |7??#789* Lr   c                 b     t        t        j                  d             fd}|S )aY  Implementation of X Block.

    Reference: [Designing Network Design
    Spaces](https://arxiv.org/abs/2003.13678)
    Args:
      filters_in: filters in the input tensor
      filters_out: filters in the output tensor
      group_width: group width
      stride: stride
      name: name prefix
    Returns:
      Output tensor of the block
    xblockc                 N   k7  rdk(  rt        d d d d d	      z  }dk7  rF t        j                  ddd	d
z         |       } t        j                  dddz         |      }n| } t        j                  ddd	dz         |       } t        j                  dddz         |      } t        j                  dz         |      } t        j                  dd|dd	dz         |      } t        j                  dddz         |      } t        j                  dz         |      } t        j                  ddd	dz         |      } t        j                  dddz         |      } t        j                  dz         ||z         }|S NrR   Input filters() and output filters(z) are not equal for stride 4. Input and output filters must be equal for stride=.r   Fr   	_skip_1x1)r   r   r   r   r   r   _skip_bnr   _conv_1x1_1r   r   r   _conv_1x1_1_bn_conv_1x1_1_relur   r   r   	_conv_3x3r   r   groupsr   r   r   _conv_3x3_bn_conv_3x3_relu_conv_1x1_2_conv_1x1_2_bn
_exit_relu)
ValueErrorr   r   r   r   )	r   r   skipr   r   filters_outr]   r   strides	       r   r   zXBlock.<locals>.apply  s1   $1  -&- (,,28 4,,2816  +Q;6==#.K' D6,,d
1BD D
FMM*%
 
F%%$T4D-D

 8FKKT$667:	
FMM*#	
 	
F%%$TN-B

 6FKKT$445a8
FMM*%
 
F%%$T4D-D

 2FKKTL01!d(;r   r   )r   r   r]   r   r   r   s   ````` r   XBlockr     s1     |7??8,-G GR Lr   c                 f     t        t        j                  d             fd}|S )a  Implementation of Y Block.

    Reference: [Designing Network Design
    Spaces](https://arxiv.org/abs/2003.13678)
    Args:
      filters_in: filters in the input tensor
      filters_out: filters in the output tensor
      group_width: group width
      stride: stride
      squeeze_excite_ratio: expansion ration for Squeeze and Excite block
      name: name prefix
    Returns:
      Output tensor of the block
    yblockc                    k7  r
dk(  rt        d d d
 d
 d	      z  }t        	z        }
dk7  rF t        j                  d
dd	d
z         |       } t        j                  dddz         |      }n| } t        j                  ddd	dz         |       } t        j                  dddz         |      } t        j
                  dz         |      } t        j                  dd
|dd	dz         |      } t        j                  dddz         |      } t        j
                  dz         |      } t        |      |      } t        j                  ddd	dz         |      } t        j                  dddz         |      } t        j
                  dz         ||z         }|S r   )r   intr   r   r   r   r   )r   r   r   r   r   r   r   r]   r   squeeze_excite_ratior   s        r   r   zYBlock.<locals>.applyO  sZ   $1  -&- (,,28 4,,2816  +&::;
Q;6==#.K' D6,,d
1BD D
FMM*%
 
F%%$T4D-D

 8FKKT$667:	
FMM*#	
 	
F%%$TN-B

 6FKKT$445a8 F!+zEaH
FMM*%
 
F%%$T4D-D

 2FKKTL01!d(;r   r   )r   r   r]   r   r   r   r   s   `````` r   YBlockr   6  s1    , |7??8,-J JX Lr   c                 j     t        t        j                  d             fd}|S )a  Implementation of Z block Reference: [Fast and Accurate Model
    Scaling](https://arxiv.org/abs/2103.06877).

    Args:
      filters_in: filters in the input tensor
      filters_out: filters in the output tensor
      group_width: group width
      stride: stride
      squeeze_excite_ratio: expansion ration for Squeeze and Excite block
      bottleneck_ratio: inverted bottleneck ratio
      name: name prefix
    Returns:
      Output tensor of the block
    zblockc                    k7  rdk(  rt        d d d d d	      z  }t        
z        }t        z        } t        j                  |ddd		d
z         |       } t        j                  dd	dz         |      }t
        j                  j                  |      } t        j                  |dd|dd		dz         |      } t        j                  dd	dz         |      }t
        j                  j                  |      }t        ||	      } t        j                  ddd		dz         |      } t        j                  dd	dz         |      }dk7  r|S || z   S )NrR   r   r   z)are not equal for stride r   r   r   Fr   r   r   r   r   r   r   r   r   r   r   r   r   r   r   )	r   r   r   r   r   r   nnsilur   )r   r   r   inv_btlneck_filtersr   bottleneck_ratior   r   r]   r   r   r   s        r   r   zZBlock.<locals>.apply  s   $1 ,A+ O,,28 4,,2816  +&::;
!+0@"@A
FMM*%
 
F%%$T4D-D

 EEJJqM	
FMM*#	
 	
F%%$TN-B

 EEJJqM ""5zM
FMM*%
 
F%%$T4D-D

 Q;Hv:r   r   )r   r   r]   r   r   r   r   r   s   ``````` r   ZBlockr     s/    . |7??8,-= =~ Lr   c                 f     t        t        j                  d             fd}|S )au  Implementation of Stage in RegNet.

    Args:
      block_type: must be one of "X", "Y", "Z"
      depth: depth of stage, number of blocks to use
      group_width: group width of all blocks in  this stage
      filters_in: input filters to this stage
      filters_out: output filters from this stage
      name: name prefix

    Returns:
      Output tensor of Stage
    stagec           
         | }dk(  rF t        d d      |      }t        d      D ]  } t         d|       |      } |S dk(  rF t        dd	z         |      }t        d      D ]  } t         d
|       |      } |S dk(  rF t        d d      |      }t        d      D ]  } t         d|       |      } |S t	        d d      )NrZ   r`   	_XBlock_0)r   r   rR   _XBlock_r   r   	_YBlock_0_YBlock_Z	_ZBlock_0_ZBlock_zBlock type `z<` not recognized.block_type must be one of (`X`, `Y`, `Z`). )r   ranger   r   NotImplementedError)	r   r   ir_   depthr   r   r]   r   s	      r   r   zStage.<locals>.apply  s   vY' A 1e_ F 6!-	
 T G 3K' A 1e_ F 6!-	
 6 ) 3vY' A 1e_ F 6!-	
  	 &zl +> > r   r   )r_   r   r]   r   r   r   r   s   `````` r   Stager     s/     |7??7+,4 4l Lr   c                 V     t        t        j                  d             fd}|S )zImplementation of classification head of RegNet.

    Args:
      num_classes: number of classes for Dense layer
      name: name prefix

    Returns:
      Classification head function.
    headc                      t        j                  dz         |       }  t        j                  dz         |       } | S )N	_head_gapr   
head_dense)r   r   Dense)r   r   num_classess    r   r   zHead.<locals>.applyQ  s@    BF))tk/AB1E?FLL4,+>?Br   r   )r  r   r   s   `` r   Headr  D  s)     |7??6*+
 Lr   c                    |dv s4t         j                  j                  j                  |      st	        d      |dk(  r|r|dk7  rt	        d      t        j                  |
|dt        j                         ||      }
|	t        j                  |
	      }n/t        j                  |	      st        j                  |	|

      }n|	}|	t        j                  |	      d   }n|}|}|r t        |      |      } t        |      |      }d}t!        d      D ]4  }| |   }||   } t#        ||||||dz   t%        |      z         |      }|}6 |r) t'        |      |      }t        j(                  ||       n?|dk(  r t        j*                         |      }n|dk(  r t        j,                         |      }t/        j0                  |||      }|dk(  r]|rd}t2        |dd    d   }nd}t2        |dd    d   }||z   }t5        j6                  |t8        |z   d|      }|j;                  |       |S ||j;                  |       |S )a	  Instantiates RegNet architecture given specific configuration.

    Args:
      depths: An iterable containing depths for each individual stages.
      widths: An iterable containing output channel width of each individual
        stages
      group_width: Number of channels to be used in each group. See grouped
        convolutions for more information.
      block_type: Must be one of `{"X", "Y", "Z"}`. For more details see the
        papers "Designing network design spaces" and "Fast and Accurate Model
        Scaling"
      default_size: Default input image size.
      model_name: An optional name for the model.
      include_preprocessing: boolean denoting whther to include preprocessing in
        the model
      include_top: Boolean denoting whether to include classification head to
        the model.
      weights: one of `None` (random initialization), "imagenet" (pre-training
        on ImageNet), or the path to the weights file to be loaded.
      input_tensor: optional TF-Keras tensor (i.e. output of `layers.Input()`)
        to use as image input for the model.
      input_shape: optional shape tuple, only to be specified if `include_top`
        is False. It should have exactly 3 inputs channels.
      pooling: optional pooling mode for feature extraction when `include_top`
        is `False`. - `None` means that the output of the model will be the 4D
        tensor output of the last convolutional layer. - `avg` means that global
        average pooling will be applied to the output of the last convolutional
        layer, and thus the output of the model will be a 2D tensor. - `max`
        means that global max pooling will be applied.
      classes: optional number of classes to classify images into, only to be
        specified if `include_top` is True, and if no `weights` argument is
        specified.
      classifier_activation: A `str` or callable. The activation function to use
        on the "top" layer. Ignored unless `include_top=True`. Set
        `classifier_activation=None` to return the logits of the "top" layer.

    Returns:
      A `keras.Model` instance.

    Raises:
        ValueError: in case of invalid argument for `weights`,
          or invalid input shape.
        ValueError: if `classifier_activation` is not `softmax` or `None` when
          using a pretrained top layer.
        ValueError: if `include_top` is True but `num_classes` is not 1000.
        ValueError: if `block_type` is not one of `{"X", "Y", "Z"}`

    >   NimagenetzThe `weights` argument should be either `None` (random initialization), `imagenet` (pre-training on ImageNet), or the path to the weights file to be loaded.r    zWIf using `weights` as `'imagenet'` with `include_top` as true, `classes` should be 1000rb   )r^   min_sizedata_formatrequire_flattenweightsN)shape)tensorr
  r   r   rS   _Stage_)r  avgmax)r   outputsr   z.h5z	_notop.h5rR   models)cache_subdir	file_hash)r   iogfileexistsr   r   obtain_input_shaper   image_data_formatr   Inputis_keras_tensorr   get_source_inputsr   r   r   r   r   r  validate_activationr   GlobalMaxPooling2Dr   ModelWEIGHTS_HASHESr   get_fileBASE_WEIGHTS_PATHload_weights)r[   r\   r]   r_   r^   
model_nameinclude_preprocessinginclude_topr	  input_tensorinput_shapepoolingclassesclassifier_activation	img_inputr   r   in_channels	num_stager   out_channelsmodelfile_suffixr  	file_nameweights_paths                             r   RegNetr3  Y  s   @ ))RUU[[-?-?-H<
 	
 *D1
 	
 !33!--/#K LL{3	&&|4LLI$I..|<Q?A$G$Q'*a AK1X #	y!i(
Ei'#i.8
  ## %DW%a(**+@'J e/--/2A+))+A.ANN&!*EE *K&z"#7:I%K&z"#7:I,	!**	)!	
 	<( L 
	7#Lr   z$keras.applications.regnet.RegNetX002zkeras.applications.RegNetX002c	                     t        t        d   d   t        d   d   t        d   d   t        d   d   t        d   d   | ||||||||      S )Nr
   r[   r\   r]   r_   r^   	r#  r%  r$  r	  r&  r'  r(  r)  r*  r3  MODEL_CONFIGSr5  s	            r   
RegNetX002r8    m     fh'fh'fm,fl+fn-3!3 r   z$keras.applications.regnet.RegNetX004zkeras.applications.RegNetX004c	                     t        t        d   d   t        d   d   t        d   d   t        d   d   t        d   d   | ||||||||      S )Nr   r[   r\   r]   r_   r^   r5  r6  r5  s	            r   
RegNetX004r;    r9  r   z$keras.applications.regnet.RegNetX006zkeras.applications.RegNetX006c	                     t        t        d   d   t        d   d   t        d   d   t        d   d   t        d   d   | ||||||||      S )Nr   r[   r\   r]   r_   r^   r5  r6  r5  s	            r   
RegNetX006r=  8  r9  r   z$keras.applications.regnet.RegNetX008zkeras.applications.RegNetX008c	                     t        t        d   d   t        d   d   t        d   d   t        d   d   t        d   d   | ||||||||      S )Nr   r[   r\   r]   r_   r^   r5  r6  r5  s	            r   
RegNetX008r?  X  r9  r   z$keras.applications.regnet.RegNetX016zkeras.applications.RegNetX016c	                     t        t        d   d   t        d   d   t        d   d   t        d   d   t        d   d   | ||||||||      S )Nr   r[   r\   r]   r_   r^   r5  r6  r5  s	            r   
RegNetX016rA  x  r9  r   z$keras.applications.regnet.RegNetX032zkeras.applications.RegNetX032c	                     t        t        d   d   t        d   d   t        d   d   t        d   d   t        d   d   | ||||||||      S )Nr   r[   r\   r]   r_   r^   r5  r6  r5  s	            r   
RegNetX032rC    r9  r   z$keras.applications.regnet.RegNetX040zkeras.applications.RegNetX040c	                     t        t        d   d   t        d   d   t        d   d   t        d   d   t        d   d   | ||||||||      S )Nr   r[   r\   r]   r_   r^   r5  r6  r5  s	            r   
RegNetX040rE    r9  r   z$keras.applications.regnet.RegNetX064zkeras.applications.RegNetX064c	                     t        t        d   d   t        d   d   t        d   d   t        d   d   t        d   d   | ||||||||      S )Nr   r[   r\   r]   r_   r^   r5  r6  r5  s	            r   
RegNetX064rG    r9  r   z$keras.applications.regnet.RegNetX080zkeras.applications.RegNetX080c	                     t        t        d   d   t        d   d   t        d   d   t        d   d   t        d   d   | ||||||||      S )Nr"   r[   r\   r]   r_   r^   r5  r6  r5  s	            r   
RegNetX080rI    r9  r   z$keras.applications.regnet.RegNetX120zkeras.applications.RegNetX120c	                     t        t        d   d   t        d   d   t        d   d   t        d   d   t        d   d   | ||||||||      S )Nr%   r[   r\   r]   r_   r^   r5  r6  r5  s	            r   
RegNetX120rK    r9  r   z$keras.applications.regnet.RegNetX160zkeras.applications.RegNetX160c	                     t        t        d   d   t        d   d   t        d   d   t        d   d   t        d   d   | ||||||||      S )Nr(   r[   r\   r]   r_   r^   r5  r6  r5  s	            r   
RegNetX160rM  8  r9  r   z$keras.applications.regnet.RegNetX320zkeras.applications.RegNetX320c	                     t        t        d   d   t        d   d   t        d   d   t        d   d   t        d   d   | ||||||||      S )Nr+   r[   r\   r]   r_   r^   r5  r6  r5  s	            r   
RegNetX320rO  X  r9  r   z$keras.applications.regnet.RegNetY002zkeras.applications.RegNetY002c	                     t        t        d   d   t        d   d   t        d   d   t        d   d   t        d   d   | ||||||||      S )Nr.   r[   r\   r]   r_   r^   r5  r6  r5  s	            r   
RegNetY002rQ  x  r9  r   z$keras.applications.regnet.RegNetY004zkeras.applications.RegNetY004c	                     t        t        d   d   t        d   d   t        d   d   t        d   d   t        d   d   | ||||||||      S )Nr1   r[   r\   r]   r_   r^   r5  r6  r5  s	            r   
RegNetY004rS    r9  r   z$keras.applications.regnet.RegNetY006zkeras.applications.RegNetY006c	                     t        t        d   d   t        d   d   t        d   d   t        d   d   t        d   d   | ||||||||      S )Nr4   r[   r\   r]   r_   r^   r5  r6  r5  s	            r   
RegNetY006rU    r9  r   z$keras.applications.regnet.RegNetY008zkeras.applications.RegNetY008c	                     t        t        d   d   t        d   d   t        d   d   t        d   d   t        d   d   | ||||||||      S )Nr7   r[   r\   r]   r_   r^   r5  r6  r5  s	            r   
RegNetY008rW    r9  r   z$keras.applications.regnet.RegNetY016zkeras.applications.RegNetY016c	                     t        t        d   d   t        d   d   t        d   d   t        d   d   t        d   d   | ||||||||      S )Nr:   r[   r\   r]   r_   r^   r5  r6  r5  s	            r   
RegNetY016rY    r9  r   z$keras.applications.regnet.RegNetY032zkeras.applications.RegNetY032c	                     t        t        d   d   t        d   d   t        d   d   t        d   d   t        d   d   | ||||||||      S )NrK   r[   r\   r]   r_   r^   r5  r6  r5  s	            r   
RegNetY032r[    r9  r   z$keras.applications.regnet.RegNetY040zkeras.applications.RegNetY040c	                     t        t        d   d   t        d   d   t        d   d   t        d   d   t        d   d   | ||||||||      S )NrL   r[   r\   r]   r_   r^   r5  r6  r5  s	            r   
RegNetY040r]  8  r9  r   z$keras.applications.regnet.RegNetY064zkeras.applications.RegNetY064c	                     t        t        d   d   t        d   d   t        d   d   t        d   d   t        d   d   | ||||||||      S )NrM   r[   r\   r]   r_   r^   r5  r6  r5  s	            r   
RegNetY064r_  X  r9  r   z$keras.applications.regnet.RegNetY080zkeras.applications.RegNetY080c	                     t        t        d   d   t        d   d   t        d   d   t        d   d   t        d   d   | ||||||||      S )NrN   r[   r\   r]   r_   r^   r5  r6  r5  s	            r   
RegNetY080ra  x  r9  r   z$keras.applications.regnet.RegNetY120zkeras.applications.RegNetY120c	                     t        t        d   d   t        d   d   t        d   d   t        d   d   t        d   d   | ||||||||      S )NrO   r[   r\   r]   r_   r^   r5  r6  r5  s	            r   
RegNetY120rc    r9  r   z$keras.applications.regnet.RegNetY160zkeras.applications.RegNetY160c	                     t        t        d   d   t        d   d   t        d   d   t        d   d   t        d   d   | ||||||||      S )NrP   r[   r\   r]   r_   r^   r5  r6  r5  s	            r   
RegNetY160re    r9  r   z$keras.applications.regnet.RegNetY320zkeras.applications.RegNetY320c	                     t        t        d   d   t        d   d   t        d   d   t        d   d   t        d   d   | ||||||||      S )NrQ   r[   r\   r]   r_   r^   r5  r6  r5  s	            r   
RegNetY320rg    r9  r   r8  r   r;  r=  r?  rA  rC  rE  rG  rI  rK  rM  rO  rQ  rS  rU  rW  rY  r[  r]  r_  ra  rc  re  rg  z*keras.applications.regnet.preprocess_inputc                     | S )a  A placeholder method for backward compatibility.

    The preprocessing logic has been included in the regnet model
    implementation. Users are no longer required to call this method to
    normalize the input data. This method does nothing and only kept as a
    placeholder to align the API surface between old and new version of model.

    Args:
      x: A floating point `numpy.array` or a `tf.Tensor`.
      data_format: Optional data format of the image tensor/array. `None` means
        the global setting `tf.keras.backend.image_data_format()` is used
        (unless you changed it, it uses "channels_last").
        Defaults to `None`.

    Returns:
      Unchanged `numpy.array` or `tf.Tensor`.
     )r   r  s     r   preprocess_inputrj    s	    & Hr   z,keras.applications.regnet.decode_predictionsc                 0    t        j                  | |      S )N)top)r   decode_predictions)predsrl  s     r   rm  rm  )  s    ,,U<<r   )N)rR   N)rR         ?N)rR   ro  ro  N)r  N)	regnetTTr  NNNr  softmax)	
regnetx002TTr  NNNr  rq  )	
regnetx004TTr  NNNr  rq  )	
regnetx006TTr  NNNr  rq  )	
regnetx008TTr  NNNr  rq  )	
regnetx016TTr  NNNr  rq  )	
regnetx032TTr  NNNr  rq  )	
regnetx040TTr  NNNr  rq  )	
regnetx064TTr  NNNr  rq  )	
regnetx080TTr  NNNr  rq  )	
regnetx120TTr  NNNr  rq  )	
regnetx160TTr  NNNr  rq  )	
regnetx320TTr  NNNr  rq  )	
regnety002TTr  NNNr  rq  )	
regnety004TTr  NNNr  rq  )	
regnety006TTr  NNNr  rq  )	
regnety008TTr  NNNr  rq  )	
regnety016TTr  NNNr  rq  )	
regnety032TTr  NNNr  rq  )	
regnety040TTr  NNNr  rq  )	
regnety064TTr  NNNr  rq  )	
regnety080TTr  NNNr  rq  )	
regnety120TTr  NNNr  rq  )	
regnety160TTr  NNNr  rq  )	
regnety320TTr  NNNr  rq  )rg   )9__doc__tensorflow.compat.v2compatv2r   tf_keras.srcr   r   tf_keras.src.applicationsr   tf_keras.src.enginer   tf_keras.src.utilsr   r    tensorflow.python.util.tf_exportr	   r!  r  r7  BASE_DOCSTRINGr   r   r   r   r   r   r   r  r3  r8  r;  r=  r?  rA  rC  rE  rG  rI  rK  rM  rO  rQ  rS  rU  rW  rY  r[  r]  r_  ra  rc  re  rg  formatrj  rm  ri  r   r   <module>r     s  " " !    4 ( ) * : K a
 a
  a  a  a"  #a*  +a2  3a:  ;aB  CaJ  KaR  SaZ  [ab  caj  kar  saz  {aB  CaJ{aRi
$i $i $i, %-i: %;iH &IiV &Wid 'eir &si@ 'AiN 'Oi\ (]ij $kix %yiF %GiT %Uib %cir  &  '  '  '  '  (  (EiV<~*@#LZB 	eX 	YxGT6 #Y~ *,K #: *,K #: *,K #: *,K #: *,K #: *,K #: *,K #: *,K #: *,K #: *,K #: *,K #: *,K #: *,K #: *,K #: *,K #: *,K #: *,K #: *,K #: *,K #: *,K #: *,K #: *,K #: *,K #: *,K #: $***=
 #***=
 #***=
 #***=
 #***=
 #***=
 #***=
 #***=
 #***=
 #***=
 #***=
 #***=
 #***=
 #***=
 #***=
 #***=
 #***=
 #***=
 #***=
 #***=
 #***=
 #***=
 #***=
 #***=
  :; <* <== >= ,>>FF  r   