
    hh$W              	          d Z ddlmc mZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ ddlmZ ddlmZ dd	lmZ d
ZdddddddddZda	 	 	 	 	 	 	 	 d/dZd0dZd1dZd2dZd1dZ	 	 	 	 	 d3dZd4dZ eddd      	 	 	 	 	 	 d5d       Z edd       	 	 	 	 	 	 d5d!       Z ed"d#      	 	 	 	 	 	 d5d$       Z ed%d&      d6d'       Z ed(d)      d7d*       Z ejB                  jE                  d+ejF                  ejH                  ,      e_         ej@                  j                   e _         d-Z% e&ed.ej                   e%z           e&ed.ej                   e%z           e&ed.ej                   e%z          y)8zResNet models for TF-Keras.

Reference:
  - [Deep Residual Learning for Image Recognition](
      https://arxiv.org/abs/1512.03385) (CVPR 2015)
    N)backend)imagenet_utils)training)VersionAwareLayers)
data_utils)layer_utils)keras_exportzDhttps://storage.googleapis.com/tensorflow/keras-applications/resnet/) 2cb95161c43110f7111970584f804107 4d473c1dd8becc155b73f8504c6f6626) f1aeb4b969a6efcfb50fad2f0c20cfc5 88cf7a10940856eca736dc7b7e228a21) 100835be76be38e30d865e96f2aaae62 ee4c566cf9a93f14d82f913c2dc6dd0c) 3ef43a0b657b3be2300d5770ece849e0 fac2f116257151a9d068a22e544a4917) 6343647c601c52e1368623803854d971 c0ed64b8031c3730f411d2eb4eea35b5) a49b44d1979771252814e80f8ec446f9 ed17cf2e0169df9d443503ef94b23b33) 67a5b30d522ed92f75a1f16eef299d1a 62527c363bdd9ec598bed41947b379fc) 34fb605428fcc7aa4d62f44404c11509 0f678c91647380debd923963594981b3)resnet50	resnet101	resnet152
resnet50v2resnet101v2resnet152v2	resnext50
resnext101c                    d|v r|j                  d      an
t               a|rt        d|       |dv s4t        j
                  j                  j                  |      st        d      |dk(  r|r|	dk7  rt        d      t        j                  |dd	t        j                         ||
      }|t        j                  |      }n/t        j                  |      st        j                  ||      }n|}t        j                         dk(  rdnd}t        j                  dd      |      }t        j                  ddd|d      |      }|s9t        j!                  |dd      |      }t        j#                  dd      |      }t        j                  dd      |      }t        j%                  ddd !      |      } | |      }|r9t        j!                  |dd"      |      }t        j#                  dd#      |      }|rOt        j'                  d$      |      }t        j(                  |
|       t        j+                  |	|
d%&      |      }nA|d'k(  rt        j'                  d$      |      }n |d(k(  rt        j-                  d)      |      }|t/        j0                  |      }n|}t3        j4                  |||      }|dk(  r`|t6        v rX|r|d*z   }t6        |   d+   }n|d,z   }t6        |   d   }t9        j:                  |t<        |z   d-|.      }|j?                  |       |S ||j?                  |       |S )/a  Instantiates the ResNet, ResNetV2, and ResNeXt architecture.

    Args:
      stack_fn: a function that returns output tensor for the
        stacked residual blocks.
      preact: whether to use pre-activation or not
        (True for ResNetV2, False for ResNet and ResNeXt).
      use_bias: whether to use biases for convolutional layers or not
        (True for ResNet and ResNetV2, False for ResNeXt).
      model_name: string, model name.
      include_top: whether to include the fully-connected
        layer at the top of the network.
      weights: one of `None` (random initialization),
        'imagenet' (pre-training on ImageNet),
        or the path to the weights file to be loaded.
      input_tensor: optional TF-Keras tensor
        (i.e. output of `layers.Input()`)
        to use as image input for the model.
      input_shape: optional shape tuple, only to be specified
        if `include_top` is False (otherwise the input shape
        has to be `(224, 224, 3)` (with `channels_last` data format)
        or `(3, 224, 224)` (with `channels_first` data format).
        It should have exactly 3 inputs channels.
      pooling: optional pooling mode for feature extraction
        when `include_top` is `False`.
        - `None` means that the output of the model will be
            the 4D tensor output of the
            last convolutional layer.
        - `avg` means that global average pooling
            will be applied to the output of the
            last convolutional layer, and thus
            the output of the model will be a 2D tensor.
        - `max` means that global max pooling will
            be applied.
      classes: optional number of classes to classify images
        into, only to be specified if `include_top` is True, and
        if no `weights` argument is specified.
      classifier_activation: A `str` or callable. The activation function to use
        on the "top" layer. Ignored unless `include_top=True`. Set
        `classifier_activation=None` to return the logits of the "top" layer.
        When loading pretrained weights, `classifier_activation` can only
        be `None` or `"softmax"`.
      **kwargs: For backwards compatibility only.

    Returns:
      A `keras.Model` instance.
    layerszUnknown argument(s): >   NimagenetzThe `weights` argument should be either `None` (random initialization), `imagenet` (pre-training on ImageNet), or the path to the weights file to be loaded.r$     zWIf using `weights` as `"imagenet"` with `include_top` as true, `classes` should be 1000       )default_sizemin_sizedata_formatrequire_flattenweights)shape)tensorr-   channels_last      )r0   r0   r2   	conv1_padpaddingname@         
conv1_convstridesuse_biasr6   >conv1_bnaxisepsilonr6   relu
conv1_relur6   r1   r1   rG   	pool1_pad
pool1_poolr<   r6   post_bn	post_reluavg_poolpredictions)
activationr6   avgmaxmax_poolz&_weights_tf_dim_ordering_tf_kernels.h5r   z,_weights_tf_dim_ordering_tf_kernels_notop.h5models)cache_subdir	file_hash) popr#   r   
ValueErrortfiogfileexistsr   obtain_input_shaper   image_data_formatInputis_keras_tensorZeroPadding2DConv2DBatchNormalization
ActivationMaxPooling2DGlobalAveragePooling2Dvalidate_activationDenseGlobalMaxPooling2Dr   get_source_inputsr   ModelWEIGHTS_HASHESr   get_fileBASE_WEIGHTS_PATHload_weights)stack_fnpreactr=   
model_nameinclude_topr,   input_tensorinput_shapepoolingclassesclassifier_activationkwargs	img_inputbn_axisxinputsmodel	file_namerU   weights_paths                       ^/var/www/html/dev/engine/venv/lib/python3.12/site-packages/tf_keras/src/applications/resnet.pyResNetr   L   su   | 6H%#%09::))RUU[[-?-?-H<
 	
 *D1
 	
 !33--/#K LL{L3	&&|4LLI$I,,./AaqG%5KH	A 	b!QMaPA%%( & 

 f<8;%5KHKAAq|<Q?AA%%( & 

 f;7:))z):1=**+@'JLL 5M  

 e--:->qAA))z):1=A ..|< NN61:6E 	:J.$@"%MMI&z215I KK  'z215I!**	)!	
 	<( L 
	7#L    c                 R   t        j                         dk(  rdnd}|rEt        j                  d|z  d||dz         |       }t        j	                  |d|dz   	      |      }n| }t        j                  |d||d
z         |       } t        j	                  |d|dz   	      |       } t        j                  d|dz         |       } t        j                  ||d|dz         |       } t        j	                  |d|dz   	      |       } t        j                  d|dz         |       } t        j                  d|z  d|dz         |       } t        j	                  |d|dz   	      |       } t        j                  |dz         || g      } t        j                  d|dz         |       } | S )a  A residual block.

    Args:
      x: input tensor.
      filters: integer, filters of the bottleneck layer.
      kernel_size: default 3, kernel size of the bottleneck layer.
      stride: default 1, stride of the first layer.
      conv_shortcut: default True, use convolution shortcut if True,
          otherwise identity shortcut.
      name: string, block label.

    Returns:
      Output tensor for the residual block.
    r/   r0   r1      _0_convrJ   r>   _0_bnr@   _1_conv_1_bnrC   _1_relurE   SAME_2_convr4   _2_bn_2_relu_3_conv_3_bn_add_out)r   r]   r#   ra   rb   rc   Add)r{   filterskernel_sizestrideconv_shortcutr6   rz   shortcuts           r   block1r      s    ,,./AaqG==KF	1A ! 

 ,,( - 

 gq&ti7GHKA!!hTG^ 	" 			A 	&ti'78;Af4)3C 	 			A 	!!hTG^ 	" 			A 	&ti'78;Aa'k14)+;<Q?A!!hTG^ 	" 			A 	

v
&!}5A&tf}5a8AHr   c           
          t        | |||dz         } t        d|dz         D ]   }t        | |d|dz   t        |      z         } " | S )ad  A set of stacked residual blocks.

    Args:
      x: input tensor.
      filters: integer, filters of the bottleneck layer in a block.
      blocks: integer, blocks in the stacked blocks.
      stride1: default 2, stride of the first layer in the first block.
      name: string, stack label.

    Returns:
      Output tensor for the stacked blocks.
    _block1r   r6   r9   r1   F_blockr   r6   )r   rangestrr{   r   blocksstride1r6   is         r   stack1r   (  sZ     	q''y0@AA1fqj! 
we$/CF2J

 Hr   c           	         t        j                         dk(  rdnd}t        j                  |d|dz         |       }t        j	                  d|dz   	      |      }|r%t        j                  d
|z  d||dz         |      }n#|dkD  rt        j                  d|      |       n| }t        j                  |ddd|dz         |      } t        j                  |d|dz         |       } t        j	                  d|dz   	      |       } t        j                  d|dz         |       } t        j                  |||d|dz         |       } t        j                  |d|dz         |       } t        j	                  d|dz   	      |       } t        j                  d
|z  d|dz   	      |       } t        j                  |dz   	      || g      } | S )a  A residual block.

    Args:
        x: input tensor.
        filters: integer, filters of the bottleneck layer.
        kernel_size: default 3, kernel size of the bottleneck layer.
        stride: default 1, stride of the first layer.
        conv_shortcut: default False, use convolution shortcut if True,
          otherwise identity shortcut.
        name: string, block label.

    Returns:
      Output tensor for the residual block.
    r/   r0   r1   r>   
_preact_bnr@   rC   _preact_relurE   r   r   rJ   )r<   Fr   r;   r   r   rF   _2_padr4   r   r   r   r   r   )	r   r]   r#   rb   rc   ra   rd   r`   r   )	r{   r   r   r   r   r6   rz   rp   r   s	            r   block2r   =  s    ,,./AaqG&&hTL-@ ' 	F vD>,AB6JF==KF	1A ! 


 :@!F6215 	 	AD94D 	 		A 	!!hTG^ 	" 			A 	&ti'78;A%5D8OLQOAI 	 	 		A 	!!hTG^ 	" 			A 	&ti'78;Aa'k14)+;<Q?A

v
&!}5AHr   c           	          t        | |d|dz         } t        d|      D ]  }t        | ||dz   t        |      z         } ! t        | |||dz   t        |      z         } | S )ap  A set of stacked residual blocks.

    Args:
        x: input tensor.
        filters: integer, filters of the bottleneck layer in a block.
        blocks: integer, blocks in the stacked blocks.
        stride1: default 2, stride of the first layer in the first block.
        name: string, stack label.

    Returns:
        Output tensor for the stacked blocks.
    Tr   r   r9   r   rE   r   )r   r   r   r   s         r   stack2r   v  sl     	q'D94DEA1f >1gD8Oc!f$<=>q''x#f+0MNAHr   c           	        
 t        j                         dk(  rdnd}|rIt        j                  d|z  |z  d|d|dz         |       }t        j	                  |d|d	z   
      |      }n| }t        j                  |dd|dz         |       } t        j	                  |d|dz   
      |       } t        j                  d|dz         |       } ||z  
t        j                  d|dz         |       } t        j                  ||
d|dz         |       } t        j                  |       dd }	t        j                  | t        j                  |	|

fg            } t        j                  
fd|dz         |       } t        j                  | t        j                  |	|fg            } t        j	                  |d|dz   
      |       } t        j                  d|dz         |       } t        j                  d|z  |z  dd|dz         |       } t        j	                  |d|dz   
      |       } t        j                  |dz         || g      } t        j                  d|dz         |       } | S ) a  A residual block.

    Args:
      x: input tensor.
      filters: integer, filters of the bottleneck layer.
      kernel_size: default 3, kernel size of the bottleneck layer.
      stride: default 1, stride of the first layer.
      groups: default 32, group size for grouped convolution.
      conv_shortcut: default True, use convolution shortcut if True,
          otherwise identity shortcut.
      name: string, block label.

    Returns:
      Output tensor for the residual block.
    r/   r0   r1   r7   Fr   r;   r>   r   r@   r   )r=   r6   r   rC   r   rE   rF   r   r4   r   )r<   depth_multiplierr=   r6   Nc                 @     t         fdt              D              S )Nc              3   B   K   | ]  }d d d d d d d d |f     y wN ).0r   r{   s     r   	<genexpr>z+block3.<locals>.<lambda>.<locals>.<genexpr>  s      91a1aA&9s   )sumr   )r{   cs   `r   <lambda>zblock3.<locals>.<lambda>  s    #9a99 r   	_2_reducer   r   r   r   r   r   )r   r]   r#   ra   rb   rc   r`   DepthwiseConv2Dr-   reshapeconcatenateLambdar   )r{   r   r   r   groupsr   r6   rz   r   x_shaper   s             @r   block3r     s   0 ,,./AaqG==6\W$	! ! 
  ,,( - 

 gq5ti7GHKA!!hTG^ 	" 			A 	&ti'78;A6A%5D8OLQOAI 	 	 		A mmAs#G7..&!Q/HIJA9K 	 	 		A 	7..'/DEFA!!hTG^ 	" 			A 	&ti'78;A	v !e$:J 	 			A 	!!hTG^ 	" 			A 	

v
&!}5A&tf}5a8AHr   c                     t        | ||||dz         } t        d|dz         D ]!  }t        | ||d|dz   t        |      z         } # | S )a  A set of stacked residual blocks.

    Args:
      x: input tensor.
      filters: integer, filters of the bottleneck layer in a block.
      blocks: integer, blocks in the stacked blocks.
      stride1: default 2, stride of the first layer in the first block.
      groups: default 32, group size for grouped convolution.
      name: string, stack label.

    Returns:
      Output tensor for the stacked blocks.
    r   )r   r   r6   r9   r1   Fr   )r   r   r6   )r   r   r   )r{   r   r   r   r   r6   r   s          r   stack3r     sb     	q''&ti?OPA1fqj! 
3q6)

 Hr   z$keras.applications.resnet50.ResNet50z"keras.applications.resnet.ResNet50zkeras.applications.ResNet50c                 2    d }t        |ddd| |||||f
i |S )z'Instantiates the ResNet50 architecture.c                 |    t        | dddd      } t        | ddd	      } t        | d
dd	      } t        | ddd	      S )Nr7   r0   r1   conv2r   r6      r   conv3rE         conv4   conv5r   r{   s    r   ro   zResNet50.<locals>.stack_fn  sE    1b!QW51c17+1c17+aag..r   FTr   r   rr   r,   rs   rt   ru   rv   rx   ro   s           r   ResNet50r     s>     /   r   z#keras.applications.resnet.ResNet101zkeras.applications.ResNet101c                 2    d }t        |ddd| |||||f
i |S )z(Instantiates the ResNet101 architecture.c                 |    t        | dddd      } t        | ddd	      } t        | d
dd	      } t        | ddd	      S )Nr7   r0   r1   r   r   r   r   r   rE   r      r   r   r   r   r   s    r   ro   zResNet101.<locals>.stack_fn&  E    1b!QW51c17+1c2G,aag..r   FTr   r   r   s           r   	ResNet101r     >    /   r   z#keras.applications.resnet.ResNet152zkeras.applications.ResNet152c                 2    d }t        |ddd| |||||f
i |S )z(Instantiates the ResNet152 architecture.c                 |    t        | dddd      } t        | ddd	      } t        | d
dd	      } t        | ddd	      S )Nr7   r0   r1   r   r   r      r   rE   r   $   r   r   r   r   r   s    r   ro   zResNet152.<locals>.stack_fnI  r   r   FTr   r   r   s           r   	ResNet152r   ;  r   r   z,keras.applications.resnet50.preprocess_inputz*keras.applications.resnet.preprocess_inputc                 2    t        j                  | |d      S )Ncaffe)r*   mode)r   preprocess_input)r{   r*   s     r   r   r   ^  s    
 **	{ r   z.keras.applications.resnet50.decode_predictionsz,keras.applications.resnet.decode_predictionsc                 0    t        j                  | |      S )N)top)r   decode_predictions)predsr   s     r   r   r   h  s    
 ,,U<<r    )r   reterroraB
  

  Reference:
  - [Deep Residual Learning for Image Recognition](
      https://arxiv.org/abs/1512.03385) (CVPR 2015)

  For image classification use cases, see
  [this page for detailed examples](
    https://keras.io/api/applications/#usage-examples-for-image-classification-models).

  For transfer learning use cases, make sure to read the
  [guide to transfer learning & fine-tuning](
    https://keras.io/guides/transfer_learning/).

  Note: each TF-Keras Application expects a specific kind of input
  preprocessing. For ResNet, call
  `tf.keras.applications.resnet.preprocess_input` on your inputs before passing
  them to the model. `resnet.preprocess_input` will convert the input images
  from RGB to BGR, then will zero-center each color channel with respect to the
  ImageNet dataset, without scaling.

  Args:
    include_top: whether to include the fully-connected
      layer at the top of the network.
    weights: one of `None` (random initialization),
      'imagenet' (pre-training on ImageNet),
      or the path to the weights file to be loaded.
    input_tensor: optional TF-Keras tensor (i.e. output of `layers.Input()`)
      to use as image input for the model.
    input_shape: optional shape tuple, only to be specified
      if `include_top` is False (otherwise the input shape
      has to be `(224, 224, 3)` (with `'channels_last'` data format)
      or `(3, 224, 224)` (with `'channels_first'` data format).
      It should have exactly 3 inputs channels,
      and width and height should be no smaller than 32.
      E.g. `(200, 200, 3)` would be one valid value.
    pooling: Optional pooling mode for feature extraction
      when `include_top` is `False`.
      - `None` means that the output of the model will be
          the 4D tensor output of the
          last convolutional block.
      - `avg` means that global average pooling
          will be applied to the output of the
          last convolutional block, and thus
          the output of the model will be a 2D tensor.
      - `max` means that global max pooling will
          be applied.
    classes: optional number of classes to classify images
      into, only to be specified if `include_top` is True, and
      if no `weights` argument is specified.
    classifier_activation: A `str` or callable. The activation function to use
      on the "top" layer. Ignored unless `include_top=True`. Set
      `classifier_activation=None` to return the logits of the "top" layer.
      When loading pretrained weights, `classifier_activation` can only
      be `None` or `"softmax"`.

  Returns:
    A TF-Keras model instance.
__doc__)resnetTr$   NNNr%   softmax)r0   r1   TN)r9   N)r0   r1   FN)r0   r1   r'   TN)r9   r'   N)Tr$   NNNr%   r   )   )'r   tensorflow.compat.v2compatv2rX   tf_keras.srcr   tf_keras.src.applicationsr   tf_keras.src.enginer   tf_keras.src.layersr   tf_keras.src.utilsr   r    tensorflow.python.util.tf_exportr	   rm   rk   r#   r   r   r   r   r   r   r   r   r   r   r   r   PREPROCESS_INPUT_DOCformatPREPROCESS_INPUT_RET_DOC_CAFFEPREPROCESS_INPUT_ERROR_DOCDOCsetattrr   r   r   <module>r      s9    " !   4 ( 2 ) * : K ;!F 
 #fR0f*6r. 	L^4 *(! 
@ )+I @ )+I @ 20	 42=	= *>>EE	55

3
3 F   
 ,>>FF  :x )X--3 4 	9i//#5 6 	9i//#5 6r   