
    hhE1                     x    d Z ddlZddlmZ ddlmZ ddZddZddZ	ddZ
d	 Zd
 Zd ZddZd ZddZddZy)a  Function of unitary fourier transform (uft) and utilities

This module implements the unitary fourier transform, also known as
the ortho-normal transform. It is especially useful for convolution
[1], as it respects the Parseval equality. The value of the null
frequency is equal to

.. math::  \frac{1}{\sqrt{n}} \sum_i x_i

so the Fourier transform has the same energy as the original image
(see ``image_quad_norm`` function). The transform is applied from the
last axis for performance (assuming a C-order array input).

References
----------
.. [1] B. R. Hunt "A matrix theory proof of the discrete convolution
       theorem", IEEE Trans. on Audio and Electroacoustics,
       vol. au-19, no. 4, pp. 285-288, dec. 1971

    N   )_supported_float_typec                 h    || j                   }t        j                  | t        | d      d      }|S )aI  N-dimensional unitary Fourier transform.

    Parameters
    ----------
    inarray : ndarray
        The array to transform.
    dim : int, optional
        The last axis along which to compute the transform. All
        axes by default.

    Returns
    -------
    outarray : ndarray (same shape than inarray)
        The unitary N-D Fourier transform of ``inarray``.

    Examples
    --------
    >>> input = np.ones((3, 3, 3))
    >>> output = ufftn(input)
    >>> np.allclose(np.sum(input) / np.sqrt(input.size), output[0, 0, 0])
    True
    >>> output.shape
    (3, 3, 3)
    r   orthoaxesnorm)ndimfftfftnrangeinarraydimoutarrays      U/var/www/html/dev/engine/venv/lib/python3.12/site-packages/skimage/restoration/uft.pyufftnr      s1    2 {llxxeSD!n7CHO    c                 h    || j                   }t        j                  | t        | d      d      }|S )aj  N-dimensional unitary inverse Fourier transform.

    Parameters
    ----------
    inarray : ndarray
        The array to transform.
    dim : int, optional
        The last axis along which to compute the transform. All
        axes by default.

    Returns
    -------
    outarray : ndarray
        The unitary inverse nD Fourier transform of ``inarray``. Has the same shape as
        ``inarray``.

    Examples
    --------
    >>> input = np.ones((3, 3, 3))
    >>> output = uifftn(input)
    >>> np.allclose(np.sum(input) / np.sqrt(input.size), output[0, 0, 0])
    True
    >>> output.shape
    (3, 3, 3)
    r   r   r   )r
   r   ifftnr   r   s      r   uifftnr   ;   s1    4 {llyyucT1~GDHOr   c                 h    || j                   }t        j                  | t        | d      d      }|S )a  N-dimensional real unitary Fourier transform.

    This transform considers the Hermitian property of the transform on
    real-valued input.

    Parameters
    ----------
    inarray : ndarray, shape (M[, ...], P)
        The array to transform.
    dim : int, optional
        The last axis along which to compute the transform. All
        axes by default.

    Returns
    -------
    outarray : ndarray, shape (M[, ...], P / 2 + 1)
        The unitary N-D real Fourier transform of ``inarray``.

    Notes
    -----
    The ``urfft`` functions assume an input array of real
    values. Consequently, the output has a Hermitian property and
    redundant values are not computed or returned.

    Examples
    --------
    >>> input = np.ones((5, 5, 5))
    >>> output = urfftn(input)
    >>> np.allclose(np.sum(input) / np.sqrt(input.size), output[0, 0, 0])
    True
    >>> output.shape
    (5, 5, 3)
    r   r   r   )r
   r   rfftnr   r   s      r   urfftnr   [   s2    D {llyyucT1~GDHOr   c                 j    || j                   }t        j                  | |t        | d      d      }|S )aQ  N-dimensional inverse real unitary Fourier transform.

    This transform considers the Hermitian property of the transform
    from complex to real input.

    Parameters
    ----------
    inarray : ndarray
        The array to transform.
    dim : int, optional
        The last axis along which to compute the transform. All
        axes by default.
    shape : tuple of int, optional
        The shape of the output. The shape of ``rfft`` is ambiguous in
        case of odd-valued input shape. In this case, this parameter
        should be provided. See ``np.fft.irfftn``.

    Returns
    -------
    outarray : ndarray
        The unitary N-D inverse real Fourier transform of ``inarray``.

    Notes
    -----
    The ``uirfft`` function assumes that the output array is
    real-valued. Consequently, the input is assumed to have a Hermitian
    property and redundant values are implicit.

    Examples
    --------
    >>> input = np.ones((5, 5, 5))
    >>> output = uirfftn(urfftn(input), shape=input.shape)
    >>> np.allclose(input, output)
    True
    >>> output.shape
    (5, 5, 5)
    r   r   r   )r
   r   irfftnr   )r   r   shaper   s       r   uirfftnr      s4    L {llzz'5ucT1~GLHOr   c                     t        | d      S )ap  2-dimensional unitary Fourier transform.

    Compute the Fourier transform on the last 2 axes.

    Parameters
    ----------
    inarray : ndarray
        The array to transform.

    Returns
    -------
    outarray : ndarray (same shape as inarray)
        The unitary 2-D Fourier transform of ``inarray``.

    See Also
    --------
    uifft2, ufftn, urfftn

    Examples
    --------
    >>> input = np.ones((10, 128, 128))
    >>> output = ufft2(input)
    >>> np.allclose(np.sum(input[1, ...]) / np.sqrt(input[1, ...].size),
    ...             output[1, 0, 0])
    True
    >>> output.shape
    (10, 128, 128)
    r   )r   r   s    r   ufft2r!      s    : !r   c                     t        | d      S )a  2-dimensional inverse unitary Fourier transform.

    Compute the inverse Fourier transform on the last 2 axes.

    Parameters
    ----------
    inarray : ndarray
        The array to transform.

    Returns
    -------
    outarray : ndarray (same shape as inarray)
        The unitary 2-D inverse Fourier transform of ``inarray``.

    See Also
    --------
    uifft2, uifftn, uirfftn

    Examples
    --------
    >>> input = np.ones((10, 128, 128))
    >>> output = uifft2(input)
    >>> np.allclose(np.sum(input[1, ...]) / np.sqrt(input[1, ...].size),
    ...             output[0, 0, 0])
    True
    >>> output.shape
    (10, 128, 128)
    r   )r   r    s    r   uifft2r#      s    : '1r   c                     t        | d      S )a  2-dimensional real unitary Fourier transform

    Compute the real Fourier transform on the last 2 axes. This
    transform considers the Hermitian property of the transform from
    complex to real-valued input.

    Parameters
    ----------
    inarray : ndarray, shape (M[, ...], P)
        The array to transform.

    Returns
    -------
    outarray : ndarray, shape (M[, ...], 2 * (P - 1))
        The unitary 2-D real Fourier transform of ``inarray``.

    See Also
    --------
    ufft2, ufftn, urfftn

    Examples
    --------
    >>> input = np.ones((10, 128, 128))
    >>> output = urfft2(input)
    >>> np.allclose(np.sum(input[1,...]) / np.sqrt(input[1,...].size),
    ...             output[1, 0, 0])
    True
    >>> output.shape
    (10, 128, 65)
    r   )r   r    s    r   urfft2r%      s    > '1r   c                     t        | d|      S )a  2-dimensional inverse real unitary Fourier transform.

    Compute the real inverse Fourier transform on the last 2 axes.
    This transform considers the Hermitian property of the transform
    from complex to real-valued input.

    Parameters
    ----------
    inarray : ndarray, shape (M[, ...], P)
        The array to transform.
    shape : tuple of int, optional
        The shape of the output. The shape of ``rfft`` is ambiguous in
        case of odd-valued input shape. In this case, this parameter
        should be provided. See ``np.fft.irfftn``.

    Returns
    -------
    outarray : ndarray, shape (M[, ...], 2 * (P - 1))
        The unitary 2-D inverse real Fourier transform of ``inarray``.

    See Also
    --------
    urfft2, uifftn, uirfftn

    Examples
    --------
    >>> input = np.ones((10, 128, 128))
    >>> output = uirfftn(urfftn(input), shape=input.shape)
    >>> np.allclose(input, output)
    True
    >>> output.shape
    (10, 128, 128)
    r   )r   )r   )r   r   s     r   uirfft2r'     s    D 7AU++r   c                    | j                   d   | j                   d   k7  rvdt        j                  t        j                  t        j                  |       dz  d      d      z  t        j                  t        j                  | d         dz  d      z
  S t        j                  t        j                  t        j                  |       dz  d      d      S )aE  Return the quadratic norm of images in Fourier space.

    This function detects whether the input image satisfies the
    Hermitian property.

    Parameters
    ----------
    inarray : ndarray
        Input image. The image data should reside in the final two
        axes.

    Returns
    -------
    norm : float
        The quadratic norm of ``inarray``.

    Examples
    --------
    >>> input = np.ones((5, 5))
    >>> image_quad_norm(ufft2(input)) == np.sum(np.abs(input)**2)
    True
    >>> image_quad_norm(ufft2(input)) == image_quad_norm(urfft2(input))
    True
    r   )axis).r   )r   npsumabsr    s    r   image_quad_normr/   6  s    4 }}RGMM"--266"&&A!5B?bIIBFFFF76?#q(rM
 
 	
 vvbffRVVG_1;"EEr   c                    |s| j                   }t        | j                        }t        j                  ||      }| |t        | j                  D cg c]  }t        d|       c}      <   t        | j                        D ]P  \  }}|| j                   |z
  k\  st        j                  |t        t        j                  |dz               |      }R |rt        j                  nt        j                  }	 |	|t        | d            }
t        j                   |t        j"                        }|
j%                  |d      S c c}w )a  Compute the transfer function of an impulse response (IR).

    This function makes the necessary correct zero-padding, zero
    convention, correct fft2, etc... to compute the transfer function
    of IR. To use with unitary Fourier transform for the signal (ufftn
    or equivalent).

    Parameters
    ----------
    imp_resp : ndarray
        The impulse responses.
    shape : tuple of int
        A tuple of integer corresponding to the target shape of the
        transfer function.
    dim : int, optional
        The last axis along which to compute the transform. All
        axes by default.
    is_real : boolean, optional
       If True (default), imp_resp is supposed real and the Hermitian property
       is used with rfftn Fourier transform.

    Returns
    -------
    y : complex ndarray
       The transfer function of shape ``shape``.

    See Also
    --------
    ufftn, uifftn, urfftn, uirfftn

    Examples
    --------
    >>> np.all(np.array([[4, 0], [0, 0]]) == ir2tf(np.ones((2, 2)), (2, 2)))
    True
    >>> ir2tf(np.ones((2, 2)), (512, 512)).shape == (512, 257)
    True
    >>> ir2tf(np.ones((2, 2)), (512, 512), is_real=False).shape == (512, 512)
    True

    Notes
    -----
    The input array can be composed of multiple-dimensional IR with
    an arbitrary number of IR. The individual IR must be accessed
    through the first axes. The last ``dim`` axes contain the space
    definition.
    )dtyper   r   )shiftr+   )r   F)copy)r
   r   r1   r,   zerostupler   slice	enumeraterollintfloorr   r   r   r   promote_types	complex64astype)imp_respr   r   is_realirpadded_dtypeirpaddedsr+   	axis_sizefuncout
cplx_dtypes               r   ir2tfrG   X  s   ^ mm*8>>:Nxx^4H=EHU8AE!QK89: %X^^4 Yi8==3&&wwxBHHY]4K0L/LSWXHY  399SXXD
xucT1~
/C !!.",,?J::ju:-- 9s   Ec                    t        j                  dg| z        }t        |       D ]  }t        t	        dd      g|z  t	        d      gz   t	        dd      g| |z
  dz
  z  z         }t        j
                  g d      j                  t        |       D cg c]  }||k(  rdnd c}      ||<    d| z  |t	        dd      f| z  <   t        |||      |fS c c}w )	a8  Return the transfer function of the Laplacian.

    Laplacian is the second order difference, on row and column.

    Parameters
    ----------
    ndim : int
        The dimension of the Laplacian.
    shape : tuple
        The support on which to compute the transfer function.
    is_real : boolean, optional
       If True (default), imp_resp is assumed to be real-valued and
       the Hermitian property is used with rfftn Fourier transform
       to return the transfer function.

    Returns
    -------
    tf : array_like, complex
        The transfer function.
    impr : array_like, real
        The Laplacian.

    Examples
    --------
    >>> tf, ir = laplacian(2, (32, 32))
    >>> np.all(ir == np.array([[0, -1, 0], [-1, 4, -1], [0, -1, 0]]))
    True
    >>> np.all(tf == ir2tf(ir, (32, 32)))
    True
          r   N)      g        rK   r)   g       @)r?   )r,   r4   r   r5   r6   arrayreshaperG   )r
   r   r?   imprr   idxis          r   	laplacianrQ     s    > 88QC$JDT{ 
1a[MC5;-/5A;-4#:PQ>2RR
 HH./77,1$K8q18R"8
S		
 #&*D%1+$	ug.44 9s   C
)N)NN)NT)T)__doc__numpyr,   	scipy.fftr   _shared.utilsr   r   r   r   r   r!   r#   r%   r'   r/   rG   rQ    r   r   <module>rW      sW   *   1>@%P)X@@D",JFD@.F(5r   