Ë
    ÒhÕh  ã                   óN   — d Z ddlZddlZddlmZ ddlmZ  ed«      dd„«       Zy)z!MNIST handwritten digits dataset.é    N)Úget_file)Úkeras_exportzkeras.datasets.mnist.load_datac                 ó,  — d}|r6t         j                  j                  |«      }t        j                  |d¬«       t	        | |dz   d|¬«      } t        j                  | d¬«      5 }|d   |d	   }}|d
   |d   }}||f||ffcddd«       S # 1 sw Y   yxY w)a¦  Loads the MNIST dataset.

    This is a dataset of 60,000 28x28 grayscale images of the 10 digits,
    along with a test set of 10,000 images.
    More info can be found at the
    [MNIST homepage](http://yann.lecun.com/exdb/mnist/).

    Args:
      path: path where to cache the dataset locally relative to cache_dir.
      cache_dir: dir location where to cache the dataset locally. When None,
        defaults to `~/.keras/datasets`.

    Returns:
      Tuple of NumPy arrays: `(x_train, y_train), (x_test, y_test)`.

    **x_train**: uint8 NumPy array of grayscale image data with shapes
      `(60000, 28, 28)`, containing the training data. Pixel values range
      from 0 to 255.

    **y_train**: uint8 NumPy array of digit labels (integers in range 0-9)
      with shape `(60000,)` for the training data.

    **x_test**: uint8 NumPy array of grayscale image data with shapes
      (10000, 28, 28), containing the test data. Pixel values range
      from 0 to 255.

    **y_test**: uint8 NumPy array of digit labels (integers in range 0-9)
      with shape `(10000,)` for the test data.

    Example:

    ```python
    (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
    assert x_train.shape == (60000, 28, 28)
    assert x_test.shape == (10000, 28, 28)
    assert y_train.shape == (60000,)
    assert y_test.shape == (10000,)
    ```

    License:
      Yann LeCun and Corinna Cortes hold the copyright of MNIST dataset,
      which is a derivative work from original NIST datasets.
      MNIST dataset is made available under the terms of the
      [Creative Commons Attribution-Share Alike 3.0 license.](
      https://creativecommons.org/licenses/by-sa/3.0/)
    z<https://storage.googleapis.com/tensorflow/tf-keras-datasets/T)Úexist_okú	mnist.npzÚ@731c5ac602752760c8e48fbffcf8c3b850d9dc2a2aedcf2cc48468fc17b673d1)ÚoriginÚ	file_hashÚ	cache_dir)Úallow_pickleÚx_trainÚy_trainÚx_testÚy_testN)ÚosÚpathÚ
expanduserÚmakedirsr   ÚnpÚload)r   r   Úorigin_folderÚfr   r   r   r   s           úY/var/www/html/dev/engine/venv/lib/python3.12/site-packages/tf_keras/src/datasets/mnist.pyÚ	load_datar      s«   € ðb 	Gð ñ Ü—G‘G×&Ñ& yÓ1ˆ	Ü
‰I¨Õ-ÜØØ˜{Ñ*àNàô€Dô 
‰ DÔ	)ð 4¨QØ˜Y™<¨¨9©ˆØ˜8™ a¨¡kˆà˜Ð! F¨FÐ#3Ð3÷	4÷ 4ò 4ús   Á$B
Â
B)r   N)	Ú__doc__r   Únumpyr   Útf_keras.src.utils.data_utilsr   Ú tensorflow.python.util.tf_exportr   r   © ó    r   ú<module>r!      s4   ðñ (Û 	ã å 2õ :ñ Ð.Ó/òA4ó 0ñA4r    