
    |hx                     ,    d dl mZ ddlmZ ddZddZy)    )ndimage   )label_cythonNc           	      "   ddl m} |dk(  r|  } || j                  }d|cxk  r| j                  k  s+n t        d| j                   d| j                   d| d       |d|| j                        }t	        j
                  | |	      }|r|S |d
   S )zFaster implementation of clabel for boolean input.

    See context: https://github.com/scikit-image/scikit-image/issues/4833
       )_resolve_neighborhoodr   NzConnectivity for zD image should be in [1, ..., z]. Got .)	structurer   )morphology._utilr   ndim
ValueErrorr   label)image
background
return_numconnectivityr   	footprintresults          U/var/www/html/test/engine/venv/lib/python3.12/site-packages/skimage/measure/_label.py_label_boolr      s    
 9Qzz*

*

| ,#jj\aA
 	

 &dL%**EI]]5I6Fay    c                 b    | j                   t        k(  rt        | |||      S t        | |||      S )a
  Label connected regions of an integer array.

    Two pixels are connected when they are neighbors and have the same value.
    In 2D, they can be neighbors either in a 1- or 2-connected sense.
    The value refers to the maximum number of orthogonal hops to consider a
    pixel/voxel a neighbor::

      1-connectivity     2-connectivity     diagonal connection close-up

           [ ]           [ ]  [ ]  [ ]             [ ]
            |               \  |  /                 |  <- hop 2
      [ ]--[x]--[ ]      [ ]--[x]--[ ]        [x]--[ ]
            |               /  |  \             hop 1
           [ ]           [ ]  [ ]  [ ]

    Parameters
    ----------
    label_image : ndarray of dtype int
        Image to label.
    background : int, optional
        Consider all pixels with this value as background pixels, and label
        them as 0. By default, 0-valued pixels are considered as background
        pixels.
    return_num : bool, optional
        Whether to return the number of assigned labels.
    connectivity : int, optional
        Maximum number of orthogonal hops to consider a pixel/voxel
        as a neighbor.
        Accepted values are ranging from  1 to input.ndim. If ``None``, a full
        connectivity of ``input.ndim`` is used.

    Returns
    -------
    labels : ndarray of dtype int
        Labeled array, where all connected regions are assigned the
        same integer value.
    num : int, optional
        Number of labels, which equals the maximum label index and is only
        returned if return_num is `True`.

    See Also
    --------
    skimage.measure.regionprops
    skimage.measure.regionprops_table

    References
    ----------
    .. [1] Christophe Fiorio and Jens Gustedt, "Two linear time Union-Find
           strategies for image processing", Theoretical Computer Science
           154 (1996), pp. 165-181.
    .. [2] Kensheng Wu, Ekow Otoo and Arie Shoshani, "Optimizing connected
           component labeling algorithms", Paper LBNL-56864, 2005,
           Lawrence Berkeley National Laboratory (University of California),
           http://repositories.cdlib.org/lbnl/LBNL-56864

    Examples
    --------
    >>> import numpy as np
    >>> x = np.eye(3).astype(int)
    >>> print(x)
    [[1 0 0]
     [0 1 0]
     [0 0 1]]
    >>> print(label(x, connectivity=1))
    [[1 0 0]
     [0 2 0]
     [0 0 3]]
    >>> print(label(x, connectivity=2))
    [[1 0 0]
     [0 1 0]
     [0 0 1]]
    >>> print(label(x, background=-1))
    [[1 2 2]
     [2 1 2]
     [2 2 1]]
    >>> x = np.array([[1, 0, 0],
    ...               [1, 1, 5],
    ...               [0, 0, 0]])
    >>> print(label(x))
    [[1 0 0]
     [1 1 2]
     [0 0 0]]
    )r   r   r   )dtypeboolr   clabel)label_imager   r   r   s       r   r   r   !   s?    h D !!%	
 	
 k:z<HHr   )NFN)scipyr   _ccompr   r   r   r    r   r   <module>r       s     *8\Ir   