
    |h                     .    d dl mZ d dlZdgZdddddZy)    Ncontingency_tableFmatrix)ignore_labels	normalizesparse_typec                p   |g }|j                  d      }| j                  d      }t        j                  ||d      j                  t              }|r|t        j
                  |      z  }t        j                  |||ff      }|dk(  rt        j                  |      }|S |dk7  rd| }	t        |	      |S )a  
    Return the contingency table for all regions in matched segmentations.

    Parameters
    ----------
    im_true : ndarray of int
        Ground-truth label image, same shape as im_test.
    im_test : ndarray of int
        Test image.
    ignore_labels : sequence of int, optional
        Labels to ignore. Any part of the true image labeled with any of these
        values will not be counted in the score.
    normalize : bool
        Determines if the contingency table is normalized by pixel count.
    sparse_type : {"matrix", "array"}, optional
        The return type of `cont`, either `scipy.sparse.csr_array` or
        `scipy.sparse.csr_matrix` (default).

    Returns
    -------
    cont : scipy.sparse.csr_matrix or scipy.sparse.csr_array
        A contingency table. `cont[i, j]` will equal the number of voxels
        labeled `i` in `im_true` and `j` in `im_test`. Depending on `sparse_type`,
        this can be returned as a `scipy.sparse.csr_array`.
    T)invertr   arrayz/`sparse_type` must be 'array' or 'matrix', got )
reshapenpisinastypefloatcount_nonzerosparse	csr_array
csr_matrix
ValueError)
im_trueim_testr   r   r   	im_test_r	im_true_rdatacontmsgs
             a/var/www/html/test/engine/venv/lib/python3.12/site-packages/skimage/metrics/_contingency_table.pyr   r      s    : #I#I779mD9@@GD  &&TIy#9:;Dh  &
 K	 
	?}MoK    )scipy.sparser   numpyr   __all__r    r   r   <module>r#      s!     
 (,u(,r   