
    |h?                         d dl Z d dlmZ d dlmZ d dlZd dlmZ d dlm	Z	 d dl
mZmZ ddlmZ dd	lmZ dd
lmZ ddlmZmZ ddlmZmZ d Zd Z ej6                  d      	 	 	 	 	 	 	 	 	 	 	 	 dddd       Zy)    N)Iterable)warn)random)kmeans2)pdist
squareform   )utils)gaussian)rgb2lab)img_as_floatregular_grid   )"_enforce_label_connectivity_cython_slic_cythonc                 @   t        j                  t        j                  |       t              j                  }t        j                  d      }t        j                  t        |      t              }t        j                  |j                  |t        |t        |            d            }d}|r| j                  dz
  n| j                  }t        ||z  |z        }	t        |      |	kD  r(t        j                  |j                  ||	d            }
nt        }
t        ||
   ||   d      \  }}t!        t#        |            }t        j$                  |t         j&                         |j)                  d	      }t+        |||d
d
f   z
        j-                  d      }||fS )a  Find regularly spaced centroids on a mask.

    Parameters
    ----------
    mask : 3D ndarray
        The mask within which the centroids must be positioned.
    n_centroids : int
        The number of centroids to be returned.

    Returns
    -------
    centroids : 2D ndarray
        The coordinates of the centroids with shape (n_centroids, 3).
    steps : 1D ndarray
        The approximate distance between two seeds in all dimensions.

    dtype{   F)replace
   r      )iterNr   )nparraynonzerofloatTr   RandomStatearangelenintsortchoiceminndimEllipsisr   r   r   fill_diagonalinfargminabsmean)maskn_centroidsmultichannelcoordrngidx_fullidxdense_factorndim_spatialn_dense	idx_dense	centroids_distclosest_ptsstepss                   d/var/www/html/test/engine/venv/lib/python3.12/site-packages/skimage/segmentation/slic_superpixels.py_get_mask_centroidsr?      sN   ( HHRZZ%U355E 

S
!C yyU3/H
''#**Xs;E
'CU*S
TC L$0499q=diiL<-<=G
5zG GGCJJx%JHI		5+U3Za@LIq eI&'DT266"++b/K	Ik1n556;;A>Ee    c                 L   | j                   dd \  }}}t        j                  d|d|d|f   \  }}}t        | j                   dd |      }||   j	                         dt        j
                  f   }	||   j	                         dt        j
                  f   }
||   j	                         dt        j
                  f   }t        j                  |	|
|gd      }t        j                  |D cg c]%  }|j                  t        |j                        nd' c}      }||fS c c}w )a  Find regularly spaced centroids on the image.

    Parameters
    ----------
    image : 2D, 3D or 4D ndarray
        Input image, which can be 2D or 3D, and grayscale or
        multichannel.
    n_centroids : int
        The (approximate) number of centroids to be returned.

    Returns
    -------
    centroids : 2D ndarray
        The coordinates of the centroids with shape (~n_centroids, 3).
    steps : 1D ndarray
        The approximate distance between two seeds in all dimensions.

    N   .r   axis      ?)
shaper   mgridr   ravelnewaxisconcatenateasarraystepr   )imager/   dhwgrid_zgrid_ygrid_xslicescentroids_zcentroids_ycentroids_xr9   sr=   s                  r>   _get_grid_centroidsrY   G   s
   & kk"1oGAq!XXbqb"1"bqbj1FFF%++bq/;7F.&&(bjj9K.&&(bjj9K.&&(bjj9K[+FRPIJJfU);affDUVEe Vs   ,*D!F)multichannel_outputr   )channel_axisc                   | j                   dk(  r|t        d| d      t        |       } t        j                  | j
                        }| j                  |d      } |]t        j                  |t              }|8t        j                  ||      }t        j                  || j                        }n|}| |   }n| }|j                         }|j                         }t        j                  |      rt        d	      t        j                   |      st        j                   |      rt        d
      | |z  } ||k7  r| ||z
  z  } |du}| j
                  }d}|du}| j                   dk(  r'| t        j"                  dt        j"                  f   } d}nO| j                   dk(  r|r| t        j"                  df   } d}n&| j                   dk(  r|s| dt        j"                  f   } |r@|s|<| j                  |   dk7  r|rt        d      | j                  |   dk(  rt%        |       } |dvrt        d      d}|r|j'                  d      }|j                   dk(  r(t        j                  |t        j"                  df         }|j                  | j                  dd k7  rt        d      t)        |||      \  }}d}nt+        | |      \  }}|t        j,                  d|      }nt/        |t0              rt        j2                  ||      }|rb|j4                  dk7  r;|j4                  dk(  rt7        dt8        d       nYt        d|j4                   d      t        j:                  |dd      }n(|j4                  dk7  rt        d|j4                   d      t        j                  ||      }nt=        d      t        j>                  |      r t        j@                  |||g|      }||z  }nt/        |t0              rt        j2                  ||      }|rb|j4                  dk7  r;|j4                  dk(  rt7        dt8        d       nYt        d|j4                   d      t        j:                  |dd      }n(|j4                  dk7  rt        d|j4                   d      |dkD  jC                         rtE        |      dgz   }tG        | |d       } |j                  d   }t        j                  t        jH                  |t        jJ                  || j                  d   f      gd!      |      }t        |      }d"|z  }t        j                  | |z  |      } |rtM        | ||||||
d|#	       tM        | ||||||
d|#	      }|rf|r|jO                         |z  }n%tQ        jR                  | j                  dd       |z  }tU        ||z        } tU        |	|z        }!tW        || |!|$      }|r|d   }|S )%u  Segments image using k-means clustering in Color-(x,y,z) space.

    Parameters
    ----------
    image : (M, N[, P][, C]) ndarray
        Input image. Can be 2D or 3D, and grayscale or multichannel
        (see `channel_axis` parameter).
        Input image must either be NaN-free or the NaN's must be masked out.
    n_segments : int, optional
        The (approximate) number of labels in the segmented output image.
    compactness : float, optional
        Balances color proximity and space proximity. Higher values give
        more weight to space proximity, making superpixel shapes more
        square/cubic. In SLICO mode, this is the initial compactness.
        This parameter depends strongly on image contrast and on the
        shapes of objects in the image. We recommend exploring possible
        values on a log scale, e.g., 0.01, 0.1, 1, 10, 100, before
        refining around a chosen value.
    max_num_iter : int, optional
        Maximum number of iterations of k-means.
    sigma : float or array-like of floats, optional
        Width of Gaussian smoothing kernel for pre-processing for each
        dimension of the image. The same sigma is applied to each dimension in
        case of a scalar value. Zero means no smoothing.
        Note that `sigma` is automatically scaled if it is scalar and
        if a manual voxel spacing is provided (see Notes section). If
        sigma is array-like, its size must match ``image``'s number
        of spatial dimensions.
    spacing : array-like of floats, optional
        The voxel spacing along each spatial dimension. By default,
        `slic` assumes uniform spacing (same voxel resolution along
        each spatial dimension).
        This parameter controls the weights of the distances along the
        spatial dimensions during k-means clustering.
    convert2lab : bool, optional
        Whether the input should be converted to Lab colorspace prior to
        segmentation. The input image *must* be RGB. Highly recommended.
        This option defaults to ``True`` when ``channel_axis` is not None *and*
        ``image.shape[-1] == 3``.
    enforce_connectivity : bool, optional
        Whether the generated segments are connected or not
    min_size_factor : float, optional
        Proportion of the minimum segment size to be removed with respect
        to the supposed segment size ```depth*width*height/n_segments```
    max_size_factor : float, optional
        Proportion of the maximum connected segment size. A value of 3 works
        in most of the cases.
    slic_zero : bool, optional
        Run SLIC-zero, the zero-parameter mode of SLIC. [2]_
    start_label : int, optional
        The labels' index start. Should be 0 or 1.

        .. versionadded:: 0.17
           ``start_label`` was introduced in 0.17
    mask : ndarray, optional
        If provided, superpixels are computed only where mask is True,
        and seed points are homogeneously distributed over the mask
        using a k-means clustering strategy. Mask number of dimensions
        must be equal to image number of spatial dimensions.

        .. versionadded:: 0.17
           ``mask`` was introduced in 0.17
    channel_axis : int or None, optional
        If None, the image is assumed to be a grayscale (single channel) image.
        Otherwise, this parameter indicates which axis of the array corresponds
        to channels.

        .. versionadded:: 0.19
           ``channel_axis`` was added in 0.19.

    Returns
    -------
    labels : 2D or 3D array
        Integer mask indicating segment labels.

    Raises
    ------
    ValueError
        If ``convert2lab`` is set to ``True`` but the last array
        dimension is not of length 3.
    ValueError
        If ``start_label`` is not 0 or 1.
    ValueError
        If ``image`` contains unmasked NaN values.
    ValueError
        If ``image`` contains unmasked infinite values.
    ValueError
        If ``image`` is 2D but ``channel_axis`` is -1 (the default).

    Notes
    -----
    * If `sigma > 0`, the image is smoothed using a Gaussian kernel prior to
      segmentation.

    * If `sigma` is scalar and `spacing` is provided, the kernel width is
      divided along each dimension by the spacing. For example, if ``sigma=1``
      and ``spacing=[5, 1, 1]``, the effective `sigma` is ``[0.2, 1, 1]``. This
      ensures sensible smoothing for anisotropic images.

    * The image is rescaled to be in [0, 1] prior to processing (masked
      values are ignored).

    * Images of shape (M, N, 3) are interpreted as 2D RGB images by default. To
      interpret them as 3D with the last dimension having length 3, use
      `channel_axis=None`.

    * `start_label` is introduced to handle the issue [4]_. Label indexing
      starts at 1 by default.

    References
    ----------
    .. [1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi,
        Pascal Fua, and Sabine Süsstrunk, SLIC Superpixels Compared to
        State-of-the-art Superpixel Methods, TPAMI, May 2012.
        :DOI:`10.1109/TPAMI.2012.120`
    .. [2] https://www.epfl.ch/labs/ivrl/research/slic-superpixels/#SLICO
    .. [3] Irving, Benjamin. "maskSLIC: regional superpixel generation with
           application to local pathology characterisation in medical images.",
           2016, :arXiv:`1606.09518`
    .. [4] https://github.com/scikit-image/scikit-image/issues/3722

    Examples
    --------
    >>> from skimage.segmentation import slic
    >>> from skimage.data import astronaut
    >>> img = astronaut()
    >>> segments = slic(img, n_segments=100, compactness=10)

    Increasing the compactness parameter yields more square regions:

    >>> segments = slic(img, n_segments=100, compactness=20)

    r	   Nzchannel_axis=z| indicates multichannel, which is not supported for a two-dimensional image; use channel_axis=None if the image is grayscaleT)copyr   rC   z.unmasked NaN values in image are not supportedz3unmasked infinite values in image are not supportedF.rB   z/Lab colorspace conversion requires a RGB image.)r   r   zstart_label should be 0 or 1.uint8z*image and mask should have the same shape.zdInput image is 2D: spacing number of elements must be 2. In the future, a ValueError will be raised.)
stacklevelz#Input image is 2D, but spacing has z elements (expected 2).r   r   z#Input image is 3D, but spacing has z elements (expected 3).z!spacing must be None or iterable.zbInput image is 2D: sigma number of elements must be 2. In the future, a ValueError will be raised.z!Input image is 2D, but sigma has z!Input image is 3D, but sigma has reflect)sigmamoder   rE   )ignore_colorstart_label)rd   ),r'   
ValueErrorr   r
   _supported_float_typer   astyper   ascontiguousarrayboolexpand_dimsbroadcast_torF   r&   maxisnanisinfrI   r   viewr?   rY   ones
isinstancer   rK   sizer   FutureWarninginsert	TypeErrorisscalarr   anylistr   rJ   zerosr   summathprodr#   r   )"rM   
n_segmentscompactnessmax_num_iterra   spacingconvert2labenforce_connectivitymin_size_factormax_size_factor	slic_zerord   r.   r[   float_dtypemask_image_valuesiminimaxuse_maskr   is_2dr0   update_centroidsr9   r=   r/   segmentsrL   ratiolabelssegment_sizemin_sizemax_sizes"                                     r>   slicr   i   s   n zzQ<3L> *% %
 	
 E--ekk:K LL4L0E##D5#NN4l;EOOE5;;7EEU| DD	xx~IJJ	xx~$NOO	TMEt|4HKKEEt+LzzQbjj#rzz12	q\bjj#o&	qc2::o&(;;;|$)kNOO[[&!+ENE& 899 yy!99>''RZZ_(=>D::Ra(IJJ.tZN	5.ujA	5''!5)	GX	&**WE2||q <<1$* &#$ %="<<.(?A 
 ))GQ2\\Q5<<. 79  &&we<;<<	{{5%.e<	E8	$

5.zzQ<<1$* &#$ %; ::,&=? 
 		%A.ZZ1_3::,57 
 		Uqc!e)<//!$K##
	288[%++a.,I#JKRTUH u:D+E  e<E#
	
 
F 88:3L99U[[!_5CL56563HhK
 Mr@   )d   g      $@r   r   NNTg      ?rB   Fr   N)r{   collections.abcr   warningsr   numpyr   r   scipy.cluster.vqr   scipy.spatial.distancer   r   _sharedr
   _shared.filtersr   colorr   utilr   r   _slicr   r   r?   rY   channel_as_last_axisr    r@   r>   <module>r      s     $    $ 4  &  - C3lD 6 
	W W 7Wr@   