
    '}h;                        d dl Z d dl mZ ddlmZmZmZmZmZmZm	Z	m
Z
mZmZ d dlmZmZ ddgZ G d de      Zd	d
e
 de	 de de d	z   e_        	 	 	 	 	 ddee   dee   dee   dee   dee   dee   dededededededededefdZdee   dee   dee   dee   dee   dededededededededefdZdee   dee   dee   dee   dee   dededededededededefdZy)     N)Tensor   )
	Optimizer_use_grad_for_differentiable
_get_value_default_to_fused_or_foreach_get_scalar_dtype_differentiable_doc_maximize_doc_foreach_doc_view_as_real_capturable_doc)ListOptionalAdamaxadamaxc            
       n     e Zd Z	 	 	 	 	 ddddddee   dededef fdZ fdZd	 Zedd
       Z	 xZ
S )r   F)maximizedifferentiable
capturableforeachr   r   r   c          
      B   d|k  st        d|       d|k  st        d|       d|d   cxk  rdk  sn t        d|d          d|d   cxk  rdk  sn t        d|d          d|k  st        d	|       t        ||||||||	
      }
t        |   ||
       y )N        zInvalid learning rate: zInvalid epsilon value: r         ?z#Invalid beta parameter at index 0: r   z#Invalid beta parameter at index 1: zInvalid weight_decay value: )lrbetasepsweight_decayr   r   r   r   )
ValueErrordictsuper__init__)selfparamsr   r   r   r   r   r   r   r   defaults	__class__s              Q/var/www/html/test/engine/venv/lib/python3.12/site-packages/torch/optim/adamax.pyr"   zAdamax.__init__   s     by6rd;<<cz6se<==eAh$$B58*MNNeAh$$B58*MNNl";L>JKK%)!	
 	*    c                 0   t         |   |       | j                  D ]  }|j                  dd        |j                  dd       |j                  dd       |j                  dd       |d   D ]  }| j                  j                  |g       }t        |      dk7  s.t        j                  |d         rGt        |d         }|d   r*t        j                  |t               |j                  	      nt        j                  |t               
      |d<     y )Nr   r   Fr   r   r$   r   stepdtypedevicer,   )r!   __setstate__param_groups
setdefaultstategetlentorch	is_tensorfloattensorr	   r-   )r#   r2   grouppp_statestep_valr&   s         r'   r/   zAdamax.__setstate__1   s    U#&& 
	_EY-Z/-u5\518_ _**..B/w<1$U__WV_-M$WV_5Hmrs  nAu||HDUDW`a`h`h'i,1LLIZI\,] FO	_
	_r(   c                    d}|d   D ]o  }|j                   |t        j                  |      z  }|j                  |       |j                   j                  rt        d      |j                  |j                          | j                  |   }	t        |	      dk(  r|d   r*t        j                  dt               |j                        nt        j                  dt               	      |	d
<   t        j                  |t        j                        |	d<   t        j                  |t        j                        |	d<   |j                  |	d          |j                  |	d          |j                  |	d
          r |S )NFr$   z(Adamax does not support sparse gradientsr   r    r+   r   r.   r*   )memory_formatexp_avgexp_inf)gradr5   
is_complexappend	is_sparseRuntimeErrorr2   r4   zerosr	   r-   r8   
zeros_likepreserve_format)
r#   r9   params_with_gradgradsexp_avgsexp_infsstate_stepshas_complexr:   r2   s
             r'   _init_groupzAdamax._init_group?   sL   x 	.Avv~5++A..K##A&vv"#MNNLL JJqME 5zQ$),$7 "'R7H7JSTS[S[!\=B\\#UfUh=i f#(#3#3U%:%:$i  $)#3#3U%:%:$i  OOE),-OOE),-uV}-1	.4 r(   c                 z   | j                          d}|$t        j                         5   |       }ddd       | j                  D ]g  }g }g }g }g }g }|d   \  }	}
|d   }|d   }|d   }|d   }|d   }|d   }|d	   }| j	                  ||||||      }t        |||||||	|
|||||||
       i |S # 1 sw Y   xY w)zPerforms a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr   r   r   r   r   r   r   r   )
r   beta1beta2r   r   r   r   r   r   rO   ) _cuda_graph_capture_health_checkr5   enable_gradr0   rP   r   )r#   closurelossr9   rJ   rK   rL   rM   rN   rR   rS   r   r   r   r   r   r   r   rO   s                      r'   r*   zAdamax.step]   s!    	--/""$ !y! && "	E!EHHK >LE5,CtB 0LI&GZ(H"#34N|,J**52BE8U]_jkK )!-%'%"	H O! !s   B11B:)gMb`?)g?g+?g:0yE>r   NN)__name__
__module____qualname__r   boolr"   r/   rP   r   r*   __classcell__)r&   s   @r'   r   r      su     "&"+ $ "+ $"+ "+ "+ "+H_< "2 "2r(   a  Implements Adamax algorithm (a variant of Adam based on infinity norm).

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \beta_1, \beta_2
                \text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)},
                \: \lambda \text{ (weight decay)},                                                \\
            &\hspace{13mm}    \epsilon \text{ (epsilon)}                                          \\
            &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
                u_0 \leftarrow 0 \text{ ( infinity norm)}                                 \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{5mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\
            &\hspace{5mm}if \: \lambda \neq 0                                                    \\
            &\hspace{10mm} g_t \leftarrow g_t + \lambda  \theta_{t-1}                            \\
            &\hspace{5mm}m_t      \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t               \\
            &\hspace{5mm}u_t      \leftarrow   \mathrm{max}(\beta_2 u_{t-1}, |g_{t}|+\epsilon)   \\
            &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \frac{\gamma m_t}{(1-\beta^t_1) u_t} \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_.
    a
  
    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, optional): learning rate (default: 2e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        z	
        zd

    .. _Adam\: A Method for Stochastic Optimization:
        https://arxiv.org/abs/1412.6980

    r$   rK   rL   rM   rN   r   r   r   r   rO   r   rR   rS   r   r   c
                @   t        d |D              st        d      |t        | |d      \  }}|r)t        j                  j                         rt        d      |r%t        j                  j                         st        }nt        } || |||||
|||||||	|       y)zrFunctional API that performs adamax algorithm computation.

    See :class:`~torch.optim.Adamax` for details.
    c              3   P   K   | ]  }t        |t        j                           y wrX   )
isinstancer5   r   ).0ts     r'   	<genexpr>zadamax.<locals>.<genexpr>   s     @qz!U\\*@s   $&zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsNF)	use_fusedz6torch.jit.script not supported with foreach optimizers)	r   rR   rS   r   r   r   r   rO   r   )allrF   r   r5   jitis_scripting_multi_tensor_adamax_single_tensor_adamax)r$   rK   rL   rM   rN   r   r   r   r   rO   r   rR   rS   r   r   _funcs                    r'   r   r      s    2 @K@@^
 	
 1&.TYZ
7599))+STTuyy--/#$!%r(   c       	            t        |       D ]B  \  }}||   }|
s|n| }||   }||   }||   }t        j                  j                         s9|r7|j                  r|j                  s|j
                  r|j
                  sJ d       |dz  }|	dk7  r|j                  ||	      }t        j                  |      rTt        j                  |      }t        j                  |      }t        j                  |      }t        j                  |      }|j                  |d|z
         |sEt        j                  |j                  |      |j                         j                  |      |       nt        j                  |j                  |      j                  d      |j                         j                  |      j!                  d      gd      }|j#                  t        j$                  |dd             |r2||z  dz
  }|j'                  |       ||z  }|j)                  ||       d|t+        |      z  z
  }||z  }|j)                  |||        E y )	NzGIf capturable=True, params and state_steps must be CUDA or XLA tensors.r   r   alpha)outF)keepdim)value)	enumerater5   _utilsis_compilingis_cudais_xlaaddrC   view_as_reallerp_maximummul_absadd_cat	unsqueeze
unsqueeze_copy_amaxdiv_addcdiv_r   )r$   rK   rL   rM   rN   r   rR   rS   r   r   r   r   r   rO   iparamrB   r@   rA   step_tnorm_bufneg_bias_correctiondenombias_correctionclrs                            r'   ri   ri      s   " f% 395Qx#t$1+1+Q ||((*zMMfnnYXY 
 	!188E86DE"&&u-E%%d+D((1G((1G 	dAI&MMU#
$ yye$..q1488:??33G3R3RST3UVXYH MM%**Xq%@A #(6/A"5$$R(11ENN7E*%:f+="==O&CNN7GC4N8g39r(   c       	   	      F   |rJ d       t        |       dk(  ry t        j                  j                         s)|r't	        d t        | |      D              st        d      t        j                  | ||||g      }|j                         D ]
  \  \  }}}}}}|rt        ||||       |
rt        j                  |      }|d   j                  r.t        j                  |t        j                  dd      d       nt        j                  |d	       |dk7  r3|
rt        j                  |||       nt        j                  |||      }t        j                   ||d	|z
         t        j"                  ||       |
s|dk(  rt        j$                  |      }nt        j&                  |       t        j                  ||	       t        j(                  ||       |rqt        j*                  ||      }t        j,                  |d	       t        j.                  ||       t        j0                  ||      }t        j2                  |||       |D cg c]  }d	|t5        |      z  z
   }}|D cg c]
  }||z  d
z   }}t        j2                  ||||        y c c}w c c}w )Nz#_foreach ops don't support autogradr   c              3   V   K   | ]!  \  }}|j                   xr |j                    # y wrX   )ru   )ra   r:   r*   s      r'   rc   z'_multi_tensor_adamax.<locals>.<genexpr>\  s$     [wq$		2dll2[s   ')z@If capturable=True, params and state_steps must be CUDA tensors.r   cpu)r-   rm   r   )r4   r5   rs   rt   re   ziprF   r   "_group_tensors_by_device_and_dtypevaluesr   _foreach_negis_cpu_foreach_add_r8   _foreach_add_foreach_lerp__foreach_mul__foreach_abs_foreach_abs__foreach_maximum__foreach_pow_foreach_sub__foreach_div__foreach_mul_foreach_addcdiv_r   )r$   rK   rL   rM   rN   rR   rS   r   r   r   r   r   r   rO   grouped_tensorsgrouped_paramsgrouped_gradsgrouped_exp_avgsgrouped_exp_infsgrouped_state_stepsrj   bias_correctionsr   r*   bc	step_sizes                             r'   rh   rh   C  sv   $ DDD
6{a LL%%'J[#fkBZ[[]^^BBFES[]egrCstOixii  jB 3ce	a.-)9;KM`cd.-9IK[\!..}=M q!(( 3U\\#e5T\_` 3Q71##M>V % 2 2=.Xd e 	-}a%iH 	,e4 LA-!..}=M.M3/ 0-@$11%9LM 0!4 0"5&&'79IJE##N4DeLJ]^$EZ-=$= =^^2BCB"r'RCIC##N4DFVXabg3cb  _Cs   J,J)NFFFF)r5   r   	optimizerr   r   r   r   r	   r
   r   r   r   r   typingr   r   __all__r   __doc__r\   r7   r   ri   rh   r>   r(   r'   <module>r      s    ) ) ) "X
DY DN2
	 
 		 		 		 3+l # 8L8<8 6l8 6l	8
 f8 d^8 8 8 8 8 
8 8  !8" 	#8$ %8vD9LD9<D9 6lD9 6l	D9
 fD9 
D9 D9 D9 	D9 D9 D9 D9 D9 D9NPcLPc<Pc 6lPc 6l	Pc
 fPc Pc Pc 	Pc Pc 
Pc Pc Pc Pc Pcr(   