
    '}hR                        d dl mZmZ d dlZd dlmZ ddlmZmZmZm	Z	m
Z
mZmZmZmZmZ ddgZ G d de      Zd	d
e de de	 dz   e_        	 	 	 	 	 ddee   dee   dee   dee   dee   dedee   dedededededededefdZdee   dee   dee   dee   dee   dededededededededefdZdee   dee   dee   dee   dee   dededededededededefdZy)     )ListOptionalN)Tensor   )
	Optimizer_default_to_fused_or_foreach_differentiable_doc_capturable_doc_dispatch_sqrt_foreach_doc_get_scalar_dtype
_get_value_use_grad_for_differentiable_view_as_realRAdamradamc            
       n     e Zd Z	 	 	 	 	 ddddddedee   dedef fdZ fd	Zd
 Zedd       Z	 xZ
S )r   FN)foreach
capturabledifferentiabledecoupled_weight_decayr   r   r   c          
      B   d|k  st        d|       d|k  st        d|       d|d   cxk  rdk  sn t        d|d          d|d   cxk  rdk  sn t        d|d          d|k  st        d	|       t        ||||||||	
      }
t        |   ||
       y )N        zInvalid learning rate: zInvalid epsilon value: r         ?z#Invalid beta parameter at index 0: r   z#Invalid beta parameter at index 1: zInvalid weight_decay value: )lrbetasepsweight_decayr   r   r   r   )
ValueErrordictsuper__init__)selfparamsr   r   r   r   r   r   r   r   defaults	__class__s              P/var/www/html/test/engine/venv/lib/python3.12/site-packages/torch/optim/radam.pyr"   zRAdam.__init__   s     by6rd;<<cz6se<==eAh$$B58*MNNeAh$$B58*MNNl";L>JKK%!#9)	
 	*    c                 0   t         |   |       | j                  D ]  }|j                  dd        |j                  dd       |j                  dd       |j                  dd       |d   D ]  }| j                  j                  |g       }t        |      dk7  s.t        j                  |d         rGt        |d         }|d   r*t        j                  |t               |j                  	      nt        j                  |t               
      |d<     y )Nr   r   Fr   r   r$   r   stepdtypedevicer,   )r!   __setstate__param_groups
setdefaultstategetlentorch	is_tensorfloattensorr   r-   )r#   r2   grouppp_statestep_valr&   s         r'   r/   zRAdam.__setstate__;   s    U#&& 
	_EY--u55u=\518_ _**..B/w<1$U__WV_-M$WV_5Hmrs  nAu||HDUDW`a`h`h'i,1LLIZI\,] FO	_
	_r(   c                    d}|d   D ]o  }|j                   |t        j                  |      z  }|j                  |       |j                   j                  rt        d      |j                  |j                          | j                  |   }	t        |	      dk(  r|d   r*t        j                  dt               |j                        nt        j                  dt               	      |	d
<   t        j                  |t        j                        |	d<   t        j                  |t        j                        |	d<   |j                  |	d          |j                  |	d          |j                  |	d
          r |S )NFr$   z'RAdam does not support sparse gradientsr   r    r+   r   r.   r*   )memory_formatexp_avg
exp_avg_sq)gradr5   
is_complexappend	is_sparseRuntimeErrorr2   r4   zerosr   r-   r8   
zeros_likepreserve_format)
r#   r9   params_with_gradgradsexp_avgsexp_avg_sqsstate_stepshas_complexr:   r2   s
             r'   _init_groupzRAdam._init_groupI   sK   x 	2Avv!u//22 ''*66##&'PQQQVV$

1u:? !. B.?.A!((S"\\#5F5HI &M (-'7'7)>)>(E)$ +0*:*:)>)>+E,' i 01""5#67""5=17	2: r(   c                 ^   | j                          d}|$t        j                         5   |       }ddd       | j                  D ]Y  }g }g }g }g }g }|d   \  }	}
| j	                  ||||||      }t        ||||||	|
|d   |d   |d   |d   |d   |d   |d	   |
       [ |S # 1 sw Y   sxY w)zPerforms a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr   r   r   r   r   r   r   r   )
beta1beta2r   r   r   r   r   r   r   rO   ) _cuda_graph_capture_health_checkr5   enable_gradr0   rP   r   )r#   closurelossr9   rJ   rK   rL   rM   rN   rR   rS   rO   s               r'   r*   z
RAdam.stepj   s     	--/""$ !y! && 	E!EHKK >LE5**52BE8U`bmnK ;">2%Li( .$%56',-E'F'	8 ?! !s   B##B,)gMbP?)g?g+?g:0yE>r   FN)__name__
__module____qualname__boolr   r"   r/   rP   r   r*   __classcell__)r&   s   @r'   r   r      sv     ',"+ #' $"+ !%"+ $"+ "+ "+H_B "* "*r(   a  Implements RAdam algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \: \beta_1, \beta_2
                \text{ (betas)}, \: \theta_0 \text{ (params)}, \:f(\theta) \text{ (objective)}, \:
                \lambda \text{ (weightdecay)},                                                   \\
            &\hspace{13mm} \epsilon \text{ (epsilon)}, \textit{decoupled\_weight\_decay}         \\
            &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
                v_0 \leftarrow 0 \text{ ( second moment)},                                       \\
            &\hspace{18mm} \rho_{\infty} \leftarrow 2/(1-\beta_2) -1                      \\[-1.ex]
            &\rule{110mm}{0.4pt}  \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{6mm} g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1})                      \\
            &\hspace{6mm} \theta_t \leftarrow \theta_{t-1}                                       \\
            &\hspace{6mm} \textbf{if} \: \lambda \neq 0                                          \\
            &\hspace{12mm}\textbf{if} \: \textit{decoupled\_weight\_decay}                       \\
            &\hspace{18mm} \theta_t \leftarrow \theta_{t} - \gamma \lambda \theta_{t}            \\
            &\hspace{12mm}\textbf{else}                                                          \\
            &\hspace{18mm} g_t \leftarrow g_t + \lambda \theta_{t}                               \\
            &\hspace{6mm}m_t           \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t          \\
            &\hspace{6mm}v_t           \leftarrow   \beta_2 v_{t-1} + (1-\beta_2) g^2_t          \\
            &\hspace{6mm}\widehat{m_t} \leftarrow   m_t/\big(1-\beta_1^t \big)                   \\
            &\hspace{6mm}\rho_t \leftarrow \rho_{\infty} -
                2 t \beta^t_2 /\big(1-\beta_2^t \big)                                    \\[0.1.ex]
            &\hspace{6mm}\textbf{if} \: \rho_t > 5                                               \\
            &\hspace{12mm} l_t \leftarrow \frac{\sqrt{ (1-\beta^t_2) }}{ \sqrt{v_t} +\epsilon  } \\
            &\hspace{12mm} r_t \leftarrow
      \sqrt{\frac{(\rho_t-4)(\rho_t-2)\rho_{\infty}}{(\rho_{\infty}-4)(\rho_{\infty}-2) \rho_t}} \\
            &\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t} r_t l_t        \\
            &\hspace{6mm}\textbf{else}                                                           \\
            &\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}                \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `On the variance of the adaptive learning rate and beyond`_.

    This implementation provides an option to use either the original weight_decay implementation as in Adam
    (where the weight_decay is applied to the gradient) or the one from AdamW (where weight_decay is applied
    to the weight) through the decoupled_weight_decay option. When decoupled_weight_decay is set to False
    (default), it uses the original Adam style weight decay, otherwise, it uses the AdamW style which
    corresponds more closely to the `author's implementation`_ in the RAdam paper. Further information
    about decoupled weight decay can be found in `Decoupled Weight Decay Regularization`_.

    a  
    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, optional): learning rate (default: 1e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        decoupled_weight_decay (bool, optional): whether to use decoupled weight
            decay as in AdamW to obtain RAdamW (default: False)
        z	
        a  

    .. _On the variance of the adaptive learning rate and beyond:
        https://arxiv.org/abs/1908.03265
    .. _author's implementation:
        https://github.com/LiyuanLucasLiu/RAdam
    .. _Decoupled Weight Decay Regularization:
        https://arxiv.org/abs/1711.05101

    r$   rK   rL   rM   rN   r   r   r   r   rO   rR   rS   r   r   r   c
                @   t        d |D              st        d      |t        | |d      \  }}|r)t        j                  j                         rt        d      |r%t        j                  j                         st        }nt        } || |||||
||||||||	       y)zpFunctional API that performs RAdam algorithm computation.

    See :class:`~torch.optim.RAdam` for details.
    c              3   P   K   | ]  }t        |t        j                           y wrX   )
isinstancer5   r   ).0ts     r'   	<genexpr>zradam.<locals>.<genexpr>   s     @qz!U\\*@s   $&zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsNF)	use_fusedz6torch.jit.script not supported with foreach optimizers)	rR   rS   r   r   r   r   r   r   rO   )allrF   r   r5   jitis_scripting_multi_tensor_radam_single_tensor_radam)r$   rK   rL   rM   rN   r   r   r   r   rO   rR   rS   r   r   r   _funcs                    r'   r   r      s    2 @K@@^
 	
 1&.TYZ
7599))+STTuyy--/"#!5%r(   c       	         p  	
 t        |       D ]!  \  }}||   }||   }||   ||   }t        j                  j                         s9|r7|j                  r|j                  s|j
                  r|j
                  sJ d       t        j                  |      rTt        j                  |      }t        j                  |      }t        j                  |      }t        j                        |dz  }|r|n
t        |      }|dk7  r-|r|j                  d||z  z
         n|j                  ||      }|j                  |d|z
         j                  |      j                  ||d|z
         d||z  z
  }d||z  z
  ||z  }dd|z
  z  dz
  d|z  ||z  z  z  z
  fd}
	fd}|rBt        j                  d	kD   |        |       z  d
      }|j                  ||z  |z  d       ߉d	kD  r(|j                  ||z   |       z   |       z  d       |j                  ||z  d       $ y )NzGIf capturable=True, params and state_steps must be CUDA or XLA tensors.r   r   alpha)value   c                  D    dz
  dz
  z   z   dz
   dz
  z  z  z  dz  S )N   rp         ?r>   )rho_infrho_ts   r'   _compute_rectz+_single_tensor_radam.<locals>._compute_rectX  sI    19 aKGaK058:  r(   c                  ~    j                         } r| j                        } n| j                        } dz  | z  S )Nrs   )sqrtaddadd_)exp_avg_sq_sqrtbias_correction2r   r   rA   s    r'   _compute_adaptive_lrz2_single_tensor_radam.<locals>._compute_adaptive_lr`  sB    (oo/O"1"5"5c":"1"6"6s";$+>>r(         @r   g      )	enumerater5   _utilsis_compilingis_cudais_xlarC   view_as_realr   mul_ry   lerp_addcmul_whererz   )r$   rK   rL   rM   rN   rR   rS   r   r   r   r   r   r   rO   iparamrB   r@   step_tr*   bias_correction1bias_corrected_exp_avgrv   r}   updater|   rA   rt   ru   s            ``              @@@@r'   ri   ri     sI   " f% DD5Qx1+ ^
Q ||((*zMMfnnYXY  E"&&u-E%%d+D((1G++J7J 	!#vF);1%

1rL001xx\x: 	dAI&''d!e)'Du},u}, ")+;!; q5y/A%!d(etm47GGG		? [[mo@T@V.VX[\FJJ-2V;4JHs{

1B69M9OOR_Raaim
n

1B6d
CIDDr(   c       	            t        |       dk(  ry |rJ d       t        j                  j                         s%|r#t	        d t        | |      D              sJ d       t        j                  | ||||g      }|j                         D ]  \  \  }}}}}}|d   j                  r.t        j                  |t        j                  dd      d       nt        j                  |d	       |rt        ||||       d
d	|z
  z  d	z
  }|rt        j                  ||      }t        j                  |       t        j                  |d	       t        j                  ||      }t        j                  ||       t        j                  |d
       t        j                   ||       t        j                  |       t        j                  ||       |}n?|D cg c]4  }|d
t#        |      z  |t#        |      z  z  d	|t#        |      z  z
  z  z
  6 }}|dk7  r7|
rt        j                  |d	||z  z
         nt        j$                  |||      }t        j&                  ||d	|z
         t        j                  ||       t        j(                  |||d	|z
         ~|r7t        j*                  |d      }t        j*                  |d
      }t        j                  ||       ~t        j                  ||       |dz
  |d
z
  z  }t        j,                  ||      }t        j                   ||       ~t        j.                  |       t        ||      D cg c]  \  }}t        j0                  |dkD  |d      ! }}}~~|D cg c]  }t        j0                  |dkD  dd       } }t        j                  | |       t        j                  ||      }t        j                  |       t        j                  |d	       t        j                   | |       t        j                  |        t        j                  ||      }t        j                  |       t        j                  |d	       t        j.                  |       t        j                  ||       t        j                  |       ~t        j                  |       t        j                   ||       ~n|D cg c]/  }|dkD  r&t3        |dz
  |d
z
  z  |z  |dz
  |d
z
  z  |z  z        nd1 }}|D cg c]  }|dkD  rdnd }!}|D cg c]  }d	|t#        |      z  z
   }}t        |!|      D "cg c]  \  }}"||z  |"z  dz   } }}"t        ||      D "cg c],  \  }}}"t3        d	|t#        |      z  z
        ||z  |"z  z  dz  . }}}}"t        j4                  |      }#t        j                  |#|	       t        j                   |#|       t        j6                  |#       t        j                  |#|        t        j(                  |||#        y c c}w c c}}w c c}w c c}w c c}w c c}w c c}"}w c c}"}}w )Nr   z#_foreach ops don't support autogradc              3   V   K   | ]!  \  }}|j                   xr |j                    # y wrX   )r   )ra   r:   r*   s      r'   rc   z&_multi_tensor_radam.<locals>.<genexpr>  s$     V'!T199--Vs   ')z@If capturable=True, params and state_steps must be CUDA tensors.r   cpu)r-   rm   r   rp   rr   r~   r      )r4   r5   r   r   re   zipr   "_group_tensors_by_device_and_dtypevaluesis_cpu_foreach_add_r8   r   _foreach_pow_foreach_neg__foreach_mul__foreach_div_r   _foreach_add_foreach_lerp__foreach_addcmul__foreach_sub_foreach_mul_foreach_sqrt_r   r   _foreach_sqrt_foreach_reciprocal_)$r$   rK   rL   rM   rN   rR   rS   r   r   r   r   r   r   rO   grouped_tensorsgrouped_paramsgrouped_gradsgrouped_exp_avgsgrouped_exp_avg_sqsgrouped_state_stepsrj   rt   r   r|   
rho_t_listr*   numsub2denomnru   rectunrect_step_sizeunrectifiedbcbuffers$                                       r'   rh   rh   t  sT   $ 6{aDDD <<$$&:VS=UVV 	ON	OV  BBFES[]hjuCvwO ##%vJ 	
 

 q!(( 3U\\#e5T\_` 3Q7.-9IK^_ q5y/A%$11%9LM 01 0!4$11%9LM 02EF 0!4 02BC 01 0':)J GZ[>B "A
4(8$8EZPTEU<U$Vu
4(888%: : [J [ 1%##NA\8I4IJ % 2 2=.Xd e 	-}a%iH/7 3]MSTW\S\] $$Z3C%%j!4DT*W-!!4G&&z7;EU+  % FIjEYZEEKKQ4ZDZLPQDD1Hc3 ?QQ 0"5$11%9LM 01 0!4 02BC 01$11%9LM 01 0!4  !12 0"5 0$7 01 02BC  (
  19 QYqy"  !!4u<> 
D 
 ?CCdq1c1CKCJ]^$EZ-=$= =^^FI+WgFhi($dR2 5ii '**=tEU&V   "D$ q5Jt,<#<<=dRPSUU    $$%89FC(F$45""6*F$45 	0@&ImvJD[@ [  R*
 D^i s0   9X-	$X26!X84X=	YYY11Y
)FNFFF)typingr   r   r5   r   	optimizerr   r   r	   r
   r   r   r   r   r   r   __all__r   __doc__r\   r7   r   ri   rh   r>   r(   r'   <module>r      s   !     G
I D/^	 
 		 		 	_Fb $)" 8L8<8 6l8 f	8
 f8 !8 d^8 8 8 8 8 8  	!8" #8$ 
%8vUDLUD<UD 6lUD f	UD
 fUD UD UD 	UD UD 
UD UD !UD UD UDpSJLSJ<SJ 6lSJ f	SJ
 fSJ SJ SJ 	SJ SJ 
SJ !SJ SJ SJ SJr(   