
    '}h0                        d dl Z d dl mZ ddlmZmZmZmZmZmZm	Z	 d dl
mZmZ ddgZ G d de      Zd	d
e de de dz   e_        	 	 	 	 ddee   dee   dee   dee   dee   dededededededefdZdee   dee   dee   dee   dededededededefdZdee   dee   dee   dee   dededededededefdZy)    N)Tensor   )	Optimizer_use_grad_for_differentiable_default_to_fused_or_foreach_differentiable_doc_foreach_doc_maximize_doc_view_as_real)ListOptionalRproprpropc                   f     e Zd Z	 	 	 ddddddee   dedef fdZ fdZd	 Zedd
       Z	 xZ
S )r   NF)foreachmaximizedifferentiabler   r   r   c                    d|k  st        d|       d|d   cxk  rdcxk  r|d   k  sn t        d|d    d|d          t        ||||||      }t        	|   ||       y )	Ng        zInvalid learning rate: r   g      ?r   zInvalid eta values: z, )lretas
step_sizesr   r   r   )
ValueErrordictsuper__init__)
selfparamsr   r   r   r   r   r   defaults	__class__s
            P/var/www/html/test/engine/venv/lib/python3.12/site-packages/torch/optim/rprop.pyr   zRprop.__init__   s     by6rd;<<T!W,s,T!W,3DG9BtAwiHII!)
 	*    c                     t         |   |       | j                  D ]8  }|j                  dd        |j                  dd       |j                  dd       : y )Nr   r   Fr   )r   __setstate__param_groups
setdefault)r   stategroupr   s      r    r#   zRprop.__setstate__%   sV    U#&& 	6EY-Z/-u5	6r!   c           	         d}|d   D ]H  }|j                   |t        j                  |      z  }|j                  |       |j                   }|j                  rt        d      |j                  |       | j                  |   }	t        |	      dk(  rd|	d<   t        j                  |t        j                        |	d<   |j                  j                  r*t        j                  |t        |d   |d               |	d	<   nt        j                  ||d         |	d	<   |j                  |	d          |j                  |	d	          |	dxx   d
z  cc<   K |S )NFr   z'Rprop does not support sparse gradientsr   stepmemory_formatprevr   	step_sizer   )gradtorch
is_complexappend	is_sparseRuntimeErrorr&   len
zeros_likepreserve_formatdtype	full_likecomplex)
r   r'   r   gradsprevsr   has_complexpr.   r&   s
             r    _init_groupzRprop._init_group,   s=   x 	Avv~5++A..KMM!66D~~"#LMMLLJJqME 5zQ !f % 0 0U%:%:!f 77%% geDk5;.OP +& */uT{)KE+&LLv'eK01&MQM=	> r!   c                 2   d}|$t        j                         5   |       }ddd       | j                  D ]S  }g }g }g }g }|d   \  }}	|d   \  }
}|d   }|d   }| j                  |||||      }t	        |||||
|||	|||d   |       U |S # 1 sw Y   mxY w)zPerforms a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr   r   r   r   r   )step_size_minstep_size_maxetaminusetaplusr   r   r   r<   )r/   enable_gradr$   r>   r   )r   closurelossr'   r   r:   r;   r   rB   rC   r@   rA   r   r   r<   s                  r    r)   z
Rprop.stepO   s     ""$ !y! && 	EFEEJ %fHg+0+>(M=I&GZ(H**5&%
SK++!!$%56'	6 =! !s   BB)g{Gz?)g      ?g333333?)gư>2   )N)__name__
__module____qualname__r   boolr   r#   r>   r   r)   __classcell__)r   s   @r    r   r   
   sd     + #'$+ $+ + +46!F "' "'r!   a
  Implements the resilient backpropagation algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \theta_0 \in \mathbf{R}^d \text{ (params)},f(\theta)
                \text{ (objective)},                                                             \\
            &\hspace{13mm}      \eta_{+/-} \text{ (etaplus, etaminus)}, \Gamma_{max/min}
                \text{ (step sizes)}                                                             \\
            &\textbf{initialize} :   g^0_{prev} \leftarrow 0,
                \: \eta_0 \leftarrow \text{lr (learning rate)}                                   \\
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{5mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\
            &\hspace{5mm} \textbf{for} \text{  } i = 0, 1, \ldots, d-1 \: \mathbf{do}            \\
            &\hspace{10mm}  \textbf{if} \:   g^i_{prev} g^i_t  > 0                               \\
            &\hspace{15mm}  \eta^i_t \leftarrow \mathrm{min}(\eta^i_{t-1} \eta_{+},
                \Gamma_{max})                                                                    \\
            &\hspace{10mm}  \textbf{else if}  \:  g^i_{prev} g^i_t < 0                           \\
            &\hspace{15mm}  \eta^i_t \leftarrow \mathrm{max}(\eta^i_{t-1} \eta_{-},
                \Gamma_{min})                                                                    \\
            &\hspace{15mm}  g^i_t \leftarrow 0                                                   \\
            &\hspace{10mm}  \textbf{else}  \:                                                    \\
            &\hspace{15mm}  \eta^i_t \leftarrow \eta^i_{t-1}                                     \\
            &\hspace{5mm}\theta_t \leftarrow \theta_{t-1}- \eta_t \mathrm{sign}(g_t)             \\
            &\hspace{5mm}g_{prev} \leftarrow  g_t                                                \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to the paper
    `A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm
    <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.1417>`_.
    a  
    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, optional): learning rate (default: 1e-2)
        etas (Tuple[float, float], optional): pair of (etaminus, etaplus), that
            are multiplicative increase and decrease factors
            (default: (0.5, 1.2))
        step_sizes (Tuple[float, float], optional): a pair of minimal and
            maximal allowed step sizes (default: (1e-6, 50))
        z	
        z

    r   r:   r;   r   r   r   r   r<   r@   rA   rB   rC   c                    |t        | |d      \  }}|r)t        j                  j                         rt	        d      |r%t        j                  j                         st
        }nt        } || |||||	|
||||       y)zpFunctional API that performs rprop algorithm computation.

    See :class:`~torch.optim.Rprop` for details.
    NF)	use_fusedz6torch.jit.script not supported with foreach optimizers)r@   rA   rB   rC   r   r   r<   )r   r/   jitis_scriptingr3   _multi_tensor_rprop_single_tensor_rprop)r   r:   r;   r   r   r   r   r<   r@   rA   rB   rC   _funcs                 r    r   r      s    , 1&.TYZ
7599))+STTuyy--/"###%r!   c                R   t        |       D ]  \  }}||   }|s|n| }||   }||   }t        j                  |      rTt        j                  |      }t        j                  |      }t        j                  |      }t        j                  |      }|	r.|j	                  |j                               j                         }n|j	                  |      j                         }|||j                  d      <   |||j                  d      <   d||j                  d      <   |j                  |      j                  ||       |j                  t        j                        }d||j                  |      <   |j                  |j                         |d       |j                  |        y )Nr   r   r*   value)	enumerater/   r0   view_as_realmulclonesigngtlteqmul_clamp_r6   addcmul_copy_)r   r:   r;   r   r@   rA   rB   rC   r   r   r<   iparamr.   r,   r-   r]   s                    r    rR   rR      sh    f% 5Qx#t$QxqM	E"%%d+D%%d+D&&u-E**95I88DJJL)..0D88D>&&(D"TWWQZ#TWWQZTWWQZ 	t##M=A zz(=(=z>"#TWWX 	tyy{IR8

4;r!   c                ~   t        |       dk(  ry |	rJ d       t        j                  | |||g      }|j                         D ]s  \  \  }}}}}|
rt	        ||||       t        j                  ||      }|rt        j                  |       t        j                  ||       |rt        j                  |       |}t        j                  |       |D ]>  }|||j                  d      <   |||j                  d      <   d||j                  d      <   @ t        j                  ||       |D ]  }|j                  ||        t        |      }t!        t        |            D ]  }d||   ||   j                  |      <    ~|D cg c]  }|j#                          }}t        j$                  |||d       v y c c}w )Nr   z#_foreach ops don't support autogradr   rV   rW   )r4   r   "_group_tensors_by_device_and_dtypevaluesr   r/   _foreach_mul_foreach_neg__foreach_copy__foreach_sign_r^   r_   r`   _foreach_mul_rb   listranger]   _foreach_addcmul_)r   r:   r;   r   r@   rA   rB   rC   r   r   r<   grouped_tensorsgrouped_paramsgrouped_gradsgrouped_prevsgrouped_step_sizesrS   signsr]   r-   re   r.   
grad_signss                          r    rQ   rQ     s    6{aDDDBBFESXZdCefOSbSiSiSk 'ZO	K.-8JQ.-HZ[""=-@&
 	]M:.%U# 	!D&D'D D	! 	.6+ 	;I]M:	;
 ]+s=)* 	8A67M!U1X[[23	8  /<<ddiik<
<
<NVXYO'ZL =s   F:)NFFF)r/   r   	optimizerr   r   r   r   r	   r
   r   typingr   r   __all__r   __doc__rK   floatr   rR   rQ    r!   r    <module>r      s    Y Y Y !G
mI m`"D
	 
 		 		 E0r # -L-<- <- V	- d^- - - - - - - -`,L,<, <, V	, , , , , , , ,^<ZL<Z<<Z <<Z V	<Z <Z <Z <Z <Z <Z <Z <Zr!   