
    |h
                     :    d dl Z d dlmZ d dlmZ  G d de      Zy)    N)DetectionPredictor)opsc                   "     e Zd ZdZ fdZ xZS )NASPredictoraG  
    Ultralytics YOLO NAS Predictor for object detection.

    This class extends the DetectionPredictor from Ultralytics engine and is responsible for post-processing the
    raw predictions generated by the YOLO NAS models. It applies operations like non-maximum suppression and
    scaling the bounding boxes to fit the original image dimensions.

    Attributes:
        args (Namespace): Namespace containing various configurations for post-processing including confidence
            threshold, IoU threshold, agnostic NMS flag, maximum detections, and class filtering options.
        model (torch.nn.Module): The YOLO NAS model used for inference.
        batch (list): Batch of inputs for processing.

    Examples:
        >>> from ultralytics import NAS
        >>> model = NAS("yolo_nas_s")
        >>> predictor = model.predictor

        Assume that raw_preds, img, orig_imgs are available
        >>> results = predictor.postprocess(raw_preds, img, orig_imgs)

    Notes:
        Typically, this class is not instantiated directly. It is used internally within the NAS class.
    c                     t        j                  |d   d         }t        j                  ||d   d   fd      j	                  ddd      }t
        |   |||      S )a
  
        Postprocess NAS model predictions to generate final detection results.

        This method takes raw predictions from a YOLO NAS model, converts bounding box formats, and applies
        post-processing operations to generate the final detection results compatible with Ultralytics
        result visualization and analysis tools.

        Args:
            preds_in (list): Raw predictions from the NAS model, typically containing bounding boxes and class scores.
            img (torch.Tensor): Input image tensor that was fed to the model, with shape (B, C, H, W).
            orig_imgs (list | torch.Tensor | np.ndarray): Original images before preprocessing, used for scaling
                coordinates back to original dimensions.

        Returns:
            (list): List of Results objects containing the processed predictions for each image in the batch.

        Examples:
            >>> predictor = NAS("yolo_nas_s").predictor
            >>> results = predictor.postprocess(raw_preds, img, orig_imgs)
        r         )r   	xyxy2xywhtorchcatpermutesuperpostprocess)selfpreds_inimg	orig_imgsboxespreds	__class__s         ]/var/www/html/test/engine/venv/lib/python3.12/site-packages/ultralytics/models/nas/predict.pyr   zNASPredictor.postprocess#   s[    * hqk!n-		5(1+a.126>>q!QGw"5#y99    )__name__
__module____qualname____doc__r   __classcell__)r   s   @r   r   r   	   s    2: :r   r   )r   &ultralytics.models.yolo.detect.predictr   ultralytics.utilsr   r    r   r   <module>r"      s     E !1:% 1:r   