
    |h                     :    d dl mZ d dlmZmZmZ  G d de      Zy)    )DetectionPredictor)DEFAULT_CFGLOGGERopsc                   4     e Zd ZdZeddf fd	Z fdZ xZS )PosePredictoraF  
    A class extending the DetectionPredictor class for prediction based on a pose model.

    This class specializes in pose estimation, handling keypoints detection alongside standard object detection
    capabilities inherited from DetectionPredictor.

    Attributes:
        args (namespace): Configuration arguments for the predictor.
        model (torch.nn.Module): The loaded YOLO pose model with keypoint detection capabilities.

    Methods:
        construct_result: Construct the result object from the prediction, including keypoints.

    Examples:
        >>> from ultralytics.utils import ASSETS
        >>> from ultralytics.models.yolo.pose import PosePredictor
        >>> args = dict(model="yolo11n-pose.pt", source=ASSETS)
        >>> predictor = PosePredictor(overrides=args)
        >>> predictor.predict_cli()
    Nc                    t         |   |||       d| j                  _        t	        | j                  j
                  t              r>| j                  j
                  j                         dk(  rt        j                  d       yyy)a  
        Initialize PosePredictor for pose estimation tasks.

        Sets up a PosePredictor instance, configuring it for pose detection tasks and handling device-specific
        warnings for Apple MPS.

        Args:
            cfg (Any): Configuration for the predictor.
            overrides (dict, optional): Configuration overrides that take precedence over cfg.
            _callbacks (list, optional): List of callback functions to be invoked during prediction.

        Examples:
            >>> from ultralytics.utils import ASSETS
            >>> from ultralytics.models.yolo.pose import PosePredictor
            >>> args = dict(model="yolo11n-pose.pt", source=ASSETS)
            >>> predictor = PosePredictor(overrides=args)
            >>> predictor.predict_cli()
        posempsz}Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. See https://github.com/ultralytics/ultralytics/issues/4031.N)
super__init__argstask
isinstancedevicestrlowerr   warning)selfcfg	overrides
_callbacks	__class__s       c/var/www/html/test/engine/venv/lib/python3.12/site-packages/ultralytics/models/yolo/pose/predict.pyr   zPosePredictor.__init__   sj    & 	i4		dii&&,1A1A1G1G1IU1RNNN 2S,    c                    t         |   ||||      } |ddddf   j                  t        |      g| j                  j
                   }t        j                  |j                  dd ||j                        }|j                  |       |S )ab  
        Construct the result object from the prediction, including keypoints.

        Extends the parent class implementation by extracting keypoint data from predictions and adding them to the
        result object.

        Args:
            pred (torch.Tensor): The predicted bounding boxes, scores, and keypoints with shape (N, 6+K*D) where N is
                the number of detections, K is the number of keypoints, and D is the keypoint dimension.
            img (torch.Tensor): The processed input image tensor with shape (B, C, H, W).
            orig_img (np.ndarray): The original unprocessed image as a numpy array.
            img_path (str): The path to the original image file.

        Returns:
            (Results): The result object containing the original image, image path, class names, bounding boxes, and
                keypoints.
        N      )	keypoints)
r   construct_resultviewlenmodel	kpt_shaper   scale_coordsshapeupdate)r   predimgorig_imgimg_pathresult	pred_kptsr   s          r   r    zPosePredictor.construct_result8   s~    $ )$XxH$DABK$$SYF1E1EF	$$SYYqr]Ix~~N		*r   )__name__
__module____qualname____doc__r   r   r    __classcell__)r   s   @r   r   r      s     * '$4 6 r   r   N)&ultralytics.models.yolo.detect.predictr   ultralytics.utilsr   r   r   r    r   r   <module>r6      s     F 6 6I& Ir   