
    |hE                         d dl Z d dlZddlmZmZ ddlmZ ddlm	Z	 ddZ
ddZddd	d
Zddd	dZddZd Zdd	dZddd	dZddd	dZy)    N   )_supported_float_typecheck_nD   )_moments_cy)moments_raw_to_centralc                     t        | d|      S )av  Calculate all raw image moments up to a certain order.

    The following properties can be calculated from raw image moments:
     * Area as: ``M[0, 0]``.
     * Centroid as: {``M[1, 0] / M[0, 0]``, ``M[0, 1] / M[0, 0]``}.

    Note that raw moments are neither translation, scale, nor rotation
    invariant.

    Parameters
    ----------
    coords : (N, D) double or uint8 array
        Array of N points that describe an image of D dimensionality in
        Cartesian space.
    order : int, optional
        Maximum order of moments. Default is 3.

    Returns
    -------
    M : (``order + 1``, ``order + 1``, ...) array
        Raw image moments. (D dimensions)

    References
    ----------
    .. [1] Johannes Kilian. Simple Image Analysis By Moments. Durham
           University, version 0.2, Durham, 2001.

    Examples
    --------
    >>> coords = np.array([[row, col]
    ...                    for row in range(13, 17)
    ...                    for col in range(14, 18)], dtype=np.float64)
    >>> M = moments_coords(coords)
    >>> centroid = (M[1, 0] / M[0, 0], M[0, 1] / M[0, 0])
    >>> centroid
    (14.5, 15.5)
    r   )order)moments_coords_central)coordsr
   s     W/var/www/html/test/engine/venv/lib/python3.12/site-packages/skimage/measure/_moments.pymoments_coordsr   
   s    L "&!599    c                 x   t        | t              rt        j                  | d      } t	        | d       | j
                  d   }t        | j                        }|t        j                  | dt              }| j                  |d	      |z
  } t        j                  t        |dz         D cg c]  }| |z  	 c}d      } | j                  | j
                  d
|dz
  z  z         } d}t        |      D ]*  }| dd|f   }t        j                  |dd|z         }||z  }, t        j                  |d      }	|	S c c}w )a  Calculate all central image moments up to a certain order.

    The following properties can be calculated from raw image moments:
     * Area as: ``M[0, 0]``.
     * Centroid as: {``M[1, 0] / M[0, 0]``, ``M[0, 1] / M[0, 0]``}.

    Note that raw moments are neither translation, scale nor rotation
    invariant.

    Parameters
    ----------
    coords : (N, D) double or uint8 array
        Array of N points that describe an image of D dimensionality in
        Cartesian space. A tuple of coordinates as returned by
        ``np.nonzero`` is also accepted as input.
    center : tuple of float, optional
        Coordinates of the image centroid. This will be computed if it
        is not provided.
    order : int, optional
        Maximum order of moments. Default is 3.

    Returns
    -------
    Mc : (``order + 1``, ``order + 1``, ...) array
        Central image moments. (D dimensions)

    References
    ----------
    .. [1] Johannes Kilian. Simple Image Analysis By Moments. Durham
           University, version 0.2, Durham, 2001.

    Examples
    --------
    >>> coords = np.array([[row, col]
    ...                    for row in range(13, 17)
    ...                    for col in range(14, 18)])
    >>> moments_coords_central(coords)
    array([[16.,  0., 20.,  0.],
           [ 0.,  0.,  0.,  0.],
           [20.,  0., 25.,  0.],
           [ 0.,  0.,  0.,  0.]])

    As seen above, for symmetric objects, odd-order moments (columns 1 and 3,
    rows 1 and 3) are zero when centered on the centroid, or center of mass,
    of the object (the default). If we break the symmetry by adding a new
    point, this no longer holds:

    >>> coords2 = np.concatenate((coords, [[17, 17]]), axis=0)
    >>> np.round(moments_coords_central(coords2),
    ...          decimals=2)  # doctest: +NORMALIZE_WHITESPACE
    array([[17.  ,  0.  , 22.12, -2.49],
           [ 0.  ,  3.53,  1.73,  7.4 ],
           [25.88,  6.02, 36.63,  8.83],
           [ 4.15, 19.17, 14.8 , 39.6 ]])

    Image moments and central image moments are equivalent (by definition)
    when the center is (0, 0):

    >>> np.allclose(moments_coords(coords),
    ...             moments_coords_central(coords, (0, 0)))
    True
    )axisr   r   Nr   )r   dtypeFcopy)r   )
isinstancetuplenpstackr   shaper   r   meanfloatastyperangereshapemoveaxissum)
r   centerr
   ndim
float_typeccalcr   isolated_axisMcs
             r   r   r   3   s'   ~ &%  &r*VQ<<?D&v||4J~au5 ]]:E]2V;F XX%	*:;Qvqy;"EF ^^FLL44!8+<<=FDd $q$w M1a$h? m#$ 
1	BI) <s   +D7spacingc                :    t        | d| j                  z  ||      S )u  Calculate all raw image moments up to a certain order.

    The following properties can be calculated from raw image moments:
     * Area as: ``M[0, 0]``.
     * Centroid as: {``M[1, 0] / M[0, 0]``, ``M[0, 1] / M[0, 0]``}.

    Note that raw moments are neither translation, scale nor rotation
    invariant.

    Parameters
    ----------
    image : (N[, ...]) double or uint8 array
        Rasterized shape as image.
    order : int, optional
        Maximum order of moments. Default is 3.
    spacing: tuple of float, shape (ndim,)
        The pixel spacing along each axis of the image.

    Returns
    -------
    m : (``order + 1``, ``order + 1``) array
        Raw image moments.

    References
    ----------
    .. [1] Wilhelm Burger, Mark Burge. Principles of Digital Image Processing:
           Core Algorithms. Springer-Verlag, London, 2009.
    .. [2] B. Jähne. Digital Image Processing. Springer-Verlag,
           Berlin-Heidelberg, 6. edition, 2005.
    .. [3] T. H. Reiss. Recognizing Planar Objects Using Invariant Image
           Features, from Lecture notes in computer science, p. 676. Springer,
           Berlin, 1993.
    .. [4] https://en.wikipedia.org/wiki/Image_moment

    Examples
    --------
    >>> image = np.zeros((20, 20), dtype=np.float64)
    >>> image[13:17, 13:17] = 1
    >>> M = moments(image)
    >>> centroid = (M[1, 0] / M[0, 0], M[0, 1] / M[0, 0])
    >>> centroid
    (14.5, 14.5)
    r   r
   r*   )moments_centralr#   )imager
   r*   s      r   momentsr0      s    X 5$"35'RRr   c                R   |t        | ||      }t        |      S t        | j                        }|!t	        j
                  | j                  |      }| j                  |d      }t        | j                        D ]  \  }}	t	        j                  |	|      ||   z  ||   z
  }
|
ddt        j                  f   t	        j                  |dz   |      z  }t	        j                  ||| j                        }t	        j                  ||      }t	        j                  |d|      } |S )u  Calculate all central image moments up to a certain order.

    The center coordinates (cr, cc) can be calculated from the raw moments as:
    {``M[1, 0] / M[0, 0]``, ``M[0, 1] / M[0, 0]``}.

    Note that central moments are translation invariant but not scale and
    rotation invariant.

    Parameters
    ----------
    image : (N[, ...]) double or uint8 array
        Rasterized shape as image.
    center : tuple of float, optional
        Coordinates of the image centroid. This will be computed if it
        is not provided.
    order : int, optional
        The maximum order of moments computed.
    spacing: tuple of float, shape (ndim,)
        The pixel spacing along each axis of the image.

    Returns
    -------
    mu : (``order + 1``, ``order + 1``) array
        Central image moments.

    References
    ----------
    .. [1] Wilhelm Burger, Mark Burge. Principles of Digital Image Processing:
           Core Algorithms. Springer-Verlag, London, 2009.
    .. [2] B. Jähne. Digital Image Processing. Springer-Verlag,
           Berlin-Heidelberg, 6. edition, 2005.
    .. [3] T. H. Reiss. Recognizing Planar Objects Using Invariant Image
           Features, from Lecture notes in computer science, p. 676. Springer,
           Berlin, 1993.
    .. [4] https://en.wikipedia.org/wiki/Image_moment

    Examples
    --------
    >>> image = np.zeros((20, 20), dtype=np.float64)
    >>> image[13:17, 13:17] = 1
    >>> M = moments(image)
    >>> centroid = (M[1, 0] / M[0, 0], M[0, 1] / M[0, 0])
    >>> moments_central(image, centroid)
    array([[16.,  0., 20.,  0.],
           [ 0.,  0.,  0.,  0.],
           [20.,  0., 25.,  0.],
           [ 0.,  0.,  0.,  0.]])
    Nr-   r   Fr   r   r   )r0   r   r   r   r   onesr#   r   	enumerater   arangenewaxisrollaxisdot)r/   r"   r
   r*   kwargsmoments_rawfloat_dtyper&   dim
dim_lengthdeltapowers_of_deltas               r   r.   r.      s	   b ~ e5'B%k22'4K''%**K8<<%<0D$U[[1 *Z		*K873<G&QT+U2::."))AI[3
 
 {{4ejj1vvdO,{{4S)* Kr   c                 B   t        j                  t        j                  | j                        |k        rt	        d      |t        j
                  | j                        }t        j                  |       }| j                         d   }t        |      }t        j                  t        |dz         | j                        D ]Z  }t        |      dk  rt         j                  ||<   %| |   |t        |      z  z  |t        |      |j                  z  dz   z  z  ||<   \ |S )u|  Calculate all normalized central image moments up to a certain order.

    Note that normalized central moments are translation and scale invariant
    but not rotation invariant.

    Parameters
    ----------
    mu : (M[, ...], M) array
        Central image moments, where M must be greater than or equal
        to ``order``.
    order : int, optional
        Maximum order of moments. Default is 3.
    spacing: tuple of float, shape (ndim,)
        The pixel spacing along each axis of the image.

    Returns
    -------
    nu : (``order + 1``[, ...], ``order + 1``) array
        Normalized central image moments.

    References
    ----------
    .. [1] Wilhelm Burger, Mark Burge. Principles of Digital Image Processing:
           Core Algorithms. Springer-Verlag, London, 2009.
    .. [2] B. Jähne. Digital Image Processing. Springer-Verlag,
           Berlin-Heidelberg, 6. edition, 2005.
    .. [3] T. H. Reiss. Recognizing Planar Objects Using Invariant Image
           Features, from Lecture notes in computer science, p. 676. Springer,
           Berlin, 1993.
    .. [4] https://en.wikipedia.org/wiki/Image_moment

    Examples
    --------
    >>> image = np.zeros((20, 20), dtype=np.float64)
    >>> image[13:17, 13:17] = 1
    >>> m = moments(image)
    >>> centroid = (m[0, 1] / m[0, 0], m[1, 0] / m[0, 0])
    >>> mu = moments_central(image, centroid)
    >>> moments_normalized(mu)
    array([[       nan,        nan, 0.078125  , 0.        ],
           [       nan, 0.        , 0.        , 0.        ],
           [0.078125  , 0.        , 0.00610352, 0.        ],
           [0.        , 0.        , 0.        , 0.        ]])
    z)Shape of image moments must be >= `order`r   r   )repeatr   )r   anyarrayr   
ValueErrorr3   r#   
zeros_likeravelmin	itertoolsproductr   r!   nan)mur
   r*   numu0scalepowerss          r   moments_normalizedrP     s    Z 
vvbhhrxx E)*DEE''"''"	r	B
((*Q-CLE##E%!)$4RWWE v;?BvJV*uF';;Fbgg-12BvJ	 Ir   c                     | j                   dk(  rt        j                  nt        j                  }t	        j
                  | j                  |d            S )u@  Calculate Hu's set of image moments (2D-only).

    Note that this set of moments is proved to be translation, scale and
    rotation invariant.

    Parameters
    ----------
    nu : (M, M) array
        Normalized central image moments, where M must be >= 4.

    Returns
    -------
    nu : (7,) array
        Hu's set of image moments.

    References
    ----------
    .. [1] M. K. Hu, "Visual Pattern Recognition by Moment Invariants",
           IRE Trans. Info. Theory, vol. IT-8, pp. 179-187, 1962
    .. [2] Wilhelm Burger, Mark Burge. Principles of Digital Image Processing:
           Core Algorithms. Springer-Verlag, London, 2009.
    .. [3] B. Jähne. Digital Image Processing. Springer-Verlag,
           Berlin-Heidelberg, 6. edition, 2005.
    .. [4] T. H. Reiss. Recognizing Planar Objects Using Invariant Image
           Features, from Lecture notes in computer science, p. 676. Springer,
           Berlin, 1993.
    .. [5] https://en.wikipedia.org/wiki/Image_moment

    Examples
    --------
    >>> image = np.zeros((20, 20), dtype=np.float64)
    >>> image[13:17, 13:17] = 0.5
    >>> image[10:12, 10:12] = 1
    >>> mu = moments_central(image)
    >>> nu = moments_normalized(mu)
    >>> moments_hu(nu)
    array([0.74537037, 0.35116598, 0.10404918, 0.04064421, 0.00264312,
           0.02408546, 0.        ])
    float32Fr   )r   r   rR   float64r   
moments_hur   )rL   r   s     r   rT   rT   L  s=    P ((i/BJJRZZE!!"))E)">??r   c                    t        | d| j                  z  d|      }|t        t        j                  | j                  t
                       |d| j                  z     z  }|S )a4  Return the (weighted) centroid of an image.

    Parameters
    ----------
    image : array
        The input image.
    spacing: tuple of float, shape (ndim,)
        The pixel spacing along each axis of the image.

    Returns
    -------
    center : tuple of float, length ``image.ndim``
        The centroid of the (nonzero) pixels in ``image``.

    Examples
    --------
    >>> image = np.zeros((20, 20), dtype=np.float64)
    >>> image[13:17, 13:17] = 0.5
    >>> image[10:12, 10:12] = 1
    >>> centroid(image)
    array([13.16666667, 13.16666667])
    r,   r   )r"   r
   r*   r2   )r.   r#   r   r   eyeint)r/   r*   Mr"   s       r   centroidrY   x  s[    . 	dUZZ&7q'RA	%uzz-
./
D5::
	 
 Mr   c                   |t        | d|      }|d| j                  z     }t        j                  | j                  | j                  f|j                        }t        dt        j                  | j                  t              z        }t        j                  |      }d|j                  _
        t        j                  ||         ||   z
  |z  |dd t        j                  t        | j                        d      D ]i  }t        j                  | j                  t              }d|t        |      <   |t        |          |z  ||<   |t        |          |z  |j                   |<   k |S )uT  Compute the inertia tensor of the input image.

    Parameters
    ----------
    image : array
        The input image.
    mu : array, optional
        The pre-computed central moments of ``image``. The inertia tensor
        computation requires the central moments of the image. If an
        application requires both the central moments and the inertia tensor
        (for example, `skimage.measure.regionprops`), then it is more
        efficient to pre-compute them and pass them to the inertia tensor
        call.
    spacing: tuple of float, shape (ndim,)
        The pixel spacing along each axis of the image.

    Returns
    -------
    T : array, shape ``(image.ndim, image.ndim)``
        The inertia tensor of the input image. :math:`T_{i, j}` contains
        the covariance of image intensity along axes :math:`i` and :math:`j`.

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Moment_of_inertia#Inertia_tensor
    .. [2] Bernd Jähne. Spatio-Temporal Image Processing: Theory and
           Scientific Applications. (Chapter 8: Tensor Methods) Springer, 1993.
    Nr   r-   r,   r2   Tr   )r.   r#   r   zerosr   r   rV   rW   diagflags	writeabler!   rH   combinationsr   listT)	r/   rK   r*   rM   resultcorners2ddimsmu_indexs	            r   inertia_tensorrg     s5   : 
zG
 TEJJ
CXXuzz5::.bhh?F Q

#667H
AAGG FF2h< 2h</36AaD&&uUZZ'8!< 488EJJc2 d5?++c1tU8_--3	4
 Mr   c                    |t        | ||      }t        j                  j                  |      }t        j                  |dd|      }t        |d      S )ak  Compute the eigenvalues of the inertia tensor of the image.

    The inertia tensor measures covariance of the image intensity along
    the image axes. (See `inertia_tensor`.) The relative magnitude of the
    eigenvalues of the tensor is thus a measure of the elongation of a
    (bright) object in the image.

    Parameters
    ----------
    image : array
        The input image.
    mu : array, optional
        The pre-computed central moments of ``image``.
    T : array, shape ``(image.ndim, image.ndim)``
        The pre-computed inertia tensor. If ``T`` is given, ``mu`` and
        ``image`` are ignored.
    spacing: tuple of float, shape (ndim,)
        The pixel spacing along each axis of the image.

    Returns
    -------
    eigvals : list of float, length ``image.ndim``
        The eigenvalues of the inertia tensor of ``image``, in descending
        order.

    Notes
    -----
    Computing the eigenvalues requires the inertia tensor of the input image.
    This is much faster if the central moments (``mu``) are provided, or,
    alternatively, one can provide the inertia tensor (``T``) directly.
    Nr)   r   )outT)reverse)rg   r   linalgeigvalshclipsorted)r/   rK   ra   r*   eigvalss        r   inertia_tensor_eigvalsrp     sO    @ 	y5"g6ii  #G
 gggq$G4G'4((r   )   )Nrq   )rq   N)N)NN)rH   numpyr   _shared.utilsr   r    r   _moments_analyticalr   r   r   r0   r.   rP   rT   rY   rg   rp    r   r   <module>rw      sp      ;  7&:RdN,St ,S^BD BJ;|)@X  $ @5d 5p()d ()r   