
    '}h_[                         d dl mZ d dlZd dlmZ d dlmZ ddlmZ ddlm	Z
 dd	lmZ d
dgZ G d d
e      Z G d de      Zy)    )OptionalN)Tensor)	Parameter   )Module   )
functional)init	EmbeddingEmbeddingBagc                       e Zd ZU dZg dZeed<   eed<   ee   ed<   ee   ed<   eed<   e	ed<   e
ed	<   e	ed
<   e	ed<   	 	 	 	 ddededee   dee   dede	de	dee
   de	ddf fdZddZddZde
de
fdZdefdZe	 	 	 dd       Z xZS )r   a  A simple lookup table that stores embeddings of a fixed dictionary and size.

    This module is often used to store word embeddings and retrieve them using indices.
    The input to the module is a list of indices, and the output is the corresponding
    word embeddings.

    Args:
        num_embeddings (int): size of the dictionary of embeddings
        embedding_dim (int): the size of each embedding vector
        padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the gradient;
                                     therefore, the embedding vector at :attr:`padding_idx` is not updated during training,
                                     i.e. it remains as a fixed "pad". For a newly constructed Embedding,
                                     the embedding vector at :attr:`padding_idx` will default to all zeros,
                                     but can be updated to another value to be used as the padding vector.
        max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
                                    is renormalized to have norm :attr:`max_norm`.
        norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
        scale_grad_by_freq (bool, optional): If given, this will scale gradients by the inverse of frequency of
                                                the words in the mini-batch. Default ``False``.
        sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor.
                                 See Notes for more details regarding sparse gradients.

    Attributes:
        weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim)
                         initialized from :math:`\mathcal{N}(0, 1)`

    Shape:
        - Input: :math:`(*)`, IntTensor or LongTensor of arbitrary shape containing the indices to extract
        - Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}`

    .. note::
        Keep in mind that only a limited number of optimizers support
        sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`),
        :class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`)

    .. note::
        When :attr:`max_norm` is not ``None``, :class:`Embedding`'s forward method will modify the
        :attr:`weight` tensor in-place. Since tensors needed for gradient computations cannot be
        modified in-place, performing a differentiable operation on ``Embedding.weight`` before
        calling :class:`Embedding`'s forward method requires cloning ``Embedding.weight`` when
        :attr:`max_norm` is not ``None``. For example::

            n, d, m = 3, 5, 7
            embedding = nn.Embedding(n, d, max_norm=True)
            W = torch.randn((m, d), requires_grad=True)
            idx = torch.tensor([1, 2])
            a = embedding.weight.clone() @ W.t()  # weight must be cloned for this to be differentiable
            b = embedding(idx) @ W.t()  # modifies weight in-place
            out = (a.unsqueeze(0) + b.unsqueeze(1))
            loss = out.sigmoid().prod()
            loss.backward()

    Examples::

        >>> # an Embedding module containing 10 tensors of size 3
        >>> embedding = nn.Embedding(10, 3)
        >>> # a batch of 2 samples of 4 indices each
        >>> input = torch.LongTensor([[1, 2, 4, 5], [4, 3, 2, 9]])
        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
        >>> embedding(input)
        tensor([[[-0.0251, -1.6902,  0.7172],
                 [-0.6431,  0.0748,  0.6969],
                 [ 1.4970,  1.3448, -0.9685],
                 [-0.3677, -2.7265, -0.1685]],

                [[ 1.4970,  1.3448, -0.9685],
                 [ 0.4362, -0.4004,  0.9400],
                 [-0.6431,  0.0748,  0.6969],
                 [ 0.9124, -2.3616,  1.1151]]])


        >>> # example with padding_idx
        >>> embedding = nn.Embedding(10, 3, padding_idx=0)
        >>> input = torch.LongTensor([[0, 2, 0, 5]])
        >>> embedding(input)
        tensor([[[ 0.0000,  0.0000,  0.0000],
                 [ 0.1535, -2.0309,  0.9315],
                 [ 0.0000,  0.0000,  0.0000],
                 [-0.1655,  0.9897,  0.0635]]])

        >>> # example of changing `pad` vector
        >>> padding_idx = 0
        >>> embedding = nn.Embedding(3, 3, padding_idx=padding_idx)
        >>> embedding.weight
        Parameter containing:
        tensor([[ 0.0000,  0.0000,  0.0000],
                [-0.7895, -0.7089, -0.0364],
                [ 0.6778,  0.5803,  0.2678]], requires_grad=True)
        >>> with torch.no_grad():
        ...     embedding.weight[padding_idx] = torch.ones(3)
        >>> embedding.weight
        Parameter containing:
        tensor([[ 1.0000,  1.0000,  1.0000],
                [-0.7895, -0.7089, -0.0364],
                [ 0.6778,  0.5803,  0.2678]], requires_grad=True)
    )num_embeddingsembedding_dimpadding_idxmax_norm	norm_typescale_grad_by_freqsparser   r   r   r   r   r   weightfreezer   N_weight_freezereturnc                    |
|d}t         |           || _        || _        |F|dkD  r|| j                  k  s2J d       |dk  r&|| j                   k\  sJ d       | j                  |z   }|| _        || _        || _        || _        |At        t        j                  ||ffi ||	       | _        | j                          || _        y t        |j                        ||gk(  sJ d       t        ||	       | _        || _        y )Ndevicedtyper   z)Padding_idx must be within num_embeddings)requires_grad?Shape of weight does not match num_embeddings and embedding_dim)super__init__r   r   r   r   r   r   r   torchemptyr   reset_parameterslistshaper   )selfr   r   r   r   r   r   r   r   r   r   r   factory_kwargs	__class__s                V/var/www/html/test/engine/venv/lib/python3.12/site-packages/torch/nn/modules/sparse.pyr!   zEmbedding.__init__|   s%    %+U;,*"Q"T%8%88e:ee8q"t':':&::g<gg:"11K?& ""4?#EKK0O$bSa$b6=+?DK!!# 	 &>=*II RQRI#Gw;GDK    c                 b    t        j                  | j                         | j                          y Nr
   normal_r   _fill_padding_idx_with_zeror'   s    r*   r$   zEmbedding.reset_parameters       T[[!((*r+   c                     | j                   Ft        j                         5  | j                  | j                      j	                  d       d d d        y y # 1 sw Y   y xY wNr   r   r"   no_gradr   fill_r1   s    r*   r0   z%Embedding._fill_padding_idx_with_zero   S    ' 7D,,-33A67 7 (7 7   )AAinputc           	          t        j                  || j                  | j                  | j                  | j
                  | j                  | j                        S r-   )F	embeddingr   r   r   r   r   r   )r'   r:   s     r*   forwardzEmbedding.forward   sA    {{4;; 0 0$--NND33T[[B 	Br+   c                     d}| j                   |dz  }| j                  |dz  }| j                  dk7  r|dz  }| j                  dur|dz  }| j                  dur|dz  } |j
                  d	i | j                  S )
N!{num_embeddings}, {embedding_dim}, padding_idx={padding_idx}, max_norm={max_norm}r   , norm_type={norm_type}F), scale_grad_by_freq={scale_grad_by_freq}z, sparse=True )r   r   r   r   r   format__dict__)r'   ss     r*   
extra_reprzEmbedding.extra_repr   s    /'..A==$((A>>Q**A""%/<<A;;e# Aqxx($--((r+   c                 z    |j                         dk(  sJ d       |j                  \  }}	 | ||	|||||||	      }
|
S )a^  Create Embedding instance from given 2-dimensional FloatTensor.

        Args:
            embeddings (Tensor): FloatTensor containing weights for the Embedding.
                First dimension is being passed to Embedding as ``num_embeddings``, second as ``embedding_dim``.
            freeze (bool, optional): If ``True``, the tensor does not get updated in the learning process.
                Equivalent to ``embedding.weight.requires_grad = False``. Default: ``True``
            padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the gradient;
                                         therefore, the embedding vector at :attr:`padding_idx` is not updated during training,
                                         i.e. it remains as a fixed "pad".
            max_norm (float, optional): See module initialization documentation.
            norm_type (float, optional): See module initialization documentation. Default ``2``.
            scale_grad_by_freq (bool, optional): See module initialization documentation. Default ``False``.
            sparse (bool, optional): See module initialization documentation.

        Examples::

            >>> # FloatTensor containing pretrained weights
            >>> weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]])
            >>> embedding = nn.Embedding.from_pretrained(weight)
            >>> # Get embeddings for index 1
            >>> input = torch.LongTensor([1])
            >>> # xdoctest: +IGNORE_WANT("non-deterministic")
            >>> embedding(input)
            tensor([[ 4.0000,  5.1000,  6.3000]])
        r   4Embeddings parameter is expected to be 2-dimensional)	r   r   r   r   r   r   r   r   r   )dimr&   )cls
embeddingsr   r   r   r   r   r   rowscolsr=   s              r*   from_pretrainedzEmbedding.from_pretrained   sa    < ~~1$ 	CB	C$%%
d#1		 r+   )	NN       @FFNFNNr   N)TNNrR   FF)__name__
__module____qualname____doc____constants__int__annotations__r   floatboolr   r!   r$   r0   r>   strrI   classmethodrQ   __classcell__r)   s   @r*   r   r      s   _BBM #uoNLL]aejY^$(s 3 XVY] #E?>C^b080@RV .2:+7
BV B B
)C ) BFHM$* *r+   c                   x    e Zd ZU dZg dZeed<   eed<   ee   ed<   eed<   e	ed<   e
ed<   eed	<   e	ed
<   e	ed<   ee   ed<   	 	 	 	 ddededee   dede	d	ed
e	dee
   de	dee   ddf fdZddZddZdde
dee
   dee
   de
fdZdefdZe	 	 	 	 dde
de	dee   dede	d	ed
e	de	dee   dd fd       Z xZS )r   aL  Compute sums or means of 'bags' of embeddings, without instantiating the intermediate embeddings.

    For bags of constant length, no :attr:`per_sample_weights`, no indices equal to :attr:`padding_idx`,
    and with 2D inputs, this class

        * with ``mode="sum"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.sum(dim=1)``,
        * with ``mode="mean"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.mean(dim=1)``,
        * with ``mode="max"`` is equivalent to :class:`~torch.nn.Embedding` followed by ``torch.max(dim=1)``.

    However, :class:`~torch.nn.EmbeddingBag` is much more time and memory efficient than using a chain of these
    operations.

    EmbeddingBag also supports per-sample weights as an argument to the forward
    pass. This scales the output of the Embedding before performing a weighted
    reduction as specified by ``mode``. If :attr:`per_sample_weights` is passed, the
    only supported ``mode`` is ``"sum"``, which computes a weighted sum according to
    :attr:`per_sample_weights`.

    Args:
        num_embeddings (int): size of the dictionary of embeddings
        embedding_dim (int): the size of each embedding vector
        max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
                                    is renormalized to have norm :attr:`max_norm`.
        norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
        scale_grad_by_freq (bool, optional): if given, this will scale gradients by the inverse of frequency of
                                                the words in the mini-batch. Default ``False``.
                                                Note: this option is not supported when ``mode="max"``.
        mode (str, optional): ``"sum"``, ``"mean"`` or ``"max"``. Specifies the way to reduce the bag.
                                 ``"sum"`` computes the weighted sum, taking :attr:`per_sample_weights`
                                 into consideration. ``"mean"`` computes the average of the values
                                 in the bag, ``"max"`` computes the max value over each bag.
                                 Default: ``"mean"``
        sparse (bool, optional): if ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor. See
                                 Notes for more details regarding sparse gradients. Note: this option is not
                                 supported when ``mode="max"``.
        include_last_offset (bool, optional): if ``True``, :attr:`offsets` has one additional element, where the last element
                                      is equivalent to the size of `indices`. This matches the CSR format.
        padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the
                                     gradient; therefore, the embedding vector at :attr:`padding_idx` is not updated
                                     during training, i.e. it remains as a fixed "pad". For a newly constructed
                                     EmbeddingBag, the embedding vector at :attr:`padding_idx` will default to all
                                     zeros, but can be updated to another value to be used as the padding vector.
                                     Note that the embedding vector at :attr:`padding_idx` is excluded from the
                                     reduction.

    Attributes:
        weight (Tensor): the learnable weights of the module of shape `(num_embeddings, embedding_dim)`
                         initialized from :math:`\mathcal{N}(0, 1)`.

    Examples::

        >>> # an EmbeddingBag module containing 10 tensors of size 3
        >>> embedding_sum = nn.EmbeddingBag(10, 3, mode='sum')
        >>> # a batch of 2 samples of 4 indices each
        >>> input = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9], dtype=torch.long)
        >>> offsets = torch.tensor([0, 4], dtype=torch.long)
        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
        >>> embedding_sum(input, offsets)
        tensor([[-0.8861, -5.4350, -0.0523],
                [ 1.1306, -2.5798, -1.0044]])

        >>> # Example with padding_idx
        >>> embedding_sum = nn.EmbeddingBag(10, 3, mode='sum', padding_idx=2)
        >>> input = torch.tensor([2, 2, 2, 2, 4, 3, 2, 9], dtype=torch.long)
        >>> offsets = torch.tensor([0, 4], dtype=torch.long)
        >>> embedding_sum(input, offsets)
        tensor([[ 0.0000,  0.0000,  0.0000],
                [-0.7082,  3.2145, -2.6251]])

        >>> # An EmbeddingBag can be loaded from an Embedding like so
        >>> embedding = nn.Embedding(10, 3, padding_idx=2)
        >>> embedding_sum = nn.EmbeddingBag.from_pretrained(
                embedding.weight,
                padding_idx=embedding.padding_idx,
                mode='sum')
    )	r   r   r   r   r   moder   include_last_offsetr   r   r   r   r   r   r   rb   r   rc   r   Nr   r   c                    ||d}t         |           || _        || _        || _        || _        || _        |
F|
dkD  r|
| j                  k  s2J d       |
dk  r&|
| j                   k\  sJ d       | j                  |
z   }
|
| _        |7t        t        j                  ||ffi |      | _        | j                          n1t        |j                        ||gk(  sJ d       t        |      | _        || _        || _        |	| _        y )Nr   r   z)padding_idx must be within num_embeddingsr   )r    r!   r   r   r   r   r   r   r   r"   r#   r   r$   r%   r&   rb   r   rc   )r'   r   r   r   r   r   rb   r   r   rc   r   r   r   r(   r)   s                 r*   r!   zEmbeddingBag.__init__@  s   
 %+U;,* ""4"Q"T%8%88e:ee8q"t':':&::g<gg:"11K?&?#EKK0O$bSa$bcDK!!#&>=*II RQRI#G,DK	#6 r+   c                 b    t        j                  | j                         | j                          y r-   r.   r1   s    r*   r$   zEmbeddingBag.reset_parameters^  r2   r+   c                     | j                   Ft        j                         5  | j                  | j                      j	                  d       d d d        y y # 1 sw Y   y xY wr4   r5   r1   s    r*   r0   z(EmbeddingBag._fill_padding_idx_with_zerob  r8   r9   r:   offsetsper_sample_weightsc                     t        j                  || j                  || j                  | j                  | j
                  | j                  | j                  || j                  | j                        S )a  Forward pass of EmbeddingBag.

        Args:
            input (Tensor): Tensor containing bags of indices into the embedding matrix.
            offsets (Tensor, optional): Only used when :attr:`input` is 1D. :attr:`offsets` determines
                the starting index position of each bag (sequence) in :attr:`input`.
            per_sample_weights (Tensor, optional): a tensor of float / double weights, or None
                to indicate all weights should be taken to be ``1``. If specified, :attr:`per_sample_weights`
                must have exactly the same shape as input and is treated as having the same
                :attr:`offsets`, if those are not ``None``. Only supported for ``mode='sum'``.

        Returns:
            Tensor output shape of `(B, embedding_dim)`.

        .. note::

            A few notes about ``input`` and ``offsets``:

            - :attr:`input` and :attr:`offsets` have to be of the same type, either int or long

            - If :attr:`input` is 2D of shape `(B, N)`, it will be treated as ``B`` bags (sequences)
              each of fixed length ``N``, and this will return ``B`` values aggregated in a way
              depending on the :attr:`mode`. :attr:`offsets` is ignored and required to be ``None`` in this case.

            - If :attr:`input` is 1D of shape `(N)`, it will be treated as a concatenation of
              multiple bags (sequences).  :attr:`offsets` is required to be a 1D tensor containing the
              starting index positions of each bag in :attr:`input`. Therefore, for :attr:`offsets` of shape `(B)`,
              :attr:`input` will be viewed as having ``B`` bags. Empty bags (i.e., having 0-length) will have
              returned vectors filled by zeros.
        )
r<   embedding_bagr   r   r   r   rb   r   rc   r   )r'   r:   rg   rh   s       r*   r>   zEmbeddingBag.forwardg  sU    > udkk7#}}dnn#66		4;;143K3K#//	1 	1r+   c                 <   d}| j                   |dz  }| j                  dk7  r|dz  }| j                  dur|dz  }|dz  }| j                  |dz  } |j                  d	i | j
                  j                         D ci c]  \  }}|t        |       c}}S c c}}w )
Nr@   rB   r   rC   FrD   z, mode={mode}rA   rE   )r   r   r   r   rF   rG   itemsrepr)r'   rH   kvs       r*   rI   zEmbeddingBag.extra_repr  s    /==$((A>>Q**A""%/<<A	_'..AqxxI$--2E2E2GH$!Q1d1g:HIIHs   <BrN   r   c
                     |j                         dk(  sJ d       |j                  \  }
} | |
|||||||||	
      }| |j                  _        |S )a  Create EmbeddingBag instance from given 2-dimensional FloatTensor.

        Args:
            embeddings (Tensor): FloatTensor containing weights for the EmbeddingBag.
                First dimension is being passed to EmbeddingBag as 'num_embeddings', second as 'embedding_dim'.
            freeze (bool, optional): If ``True``, the tensor does not get updated in the learning process.
                Equivalent to ``embeddingbag.weight.requires_grad = False``. Default: ``True``
            max_norm (float, optional): See module initialization documentation. Default: ``None``
            norm_type (float, optional): See module initialization documentation. Default ``2``.
            scale_grad_by_freq (bool, optional): See module initialization documentation. Default ``False``.
            mode (str, optional): See module initialization documentation. Default: ``"mean"``
            sparse (bool, optional): See module initialization documentation. Default: ``False``.
            include_last_offset (bool, optional): See module initialization documentation. Default: ``False``.
            padding_idx (int, optional): See module initialization documentation. Default: ``None``.

        Examples::

            >>> # FloatTensor containing pretrained weights
            >>> weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]])
            >>> embeddingbag = nn.EmbeddingBag.from_pretrained(weight)
            >>> # Get embeddings for index 1
            >>> input = torch.LongTensor([[1, 0]])
            >>> # xdoctest: +IGNORE_WANT("non-deterministic")
            >>> embeddingbag(input)
            tensor([[ 2.5000,  3.7000,  4.6500]])
        r   rK   )
r   r   r   r   r   r   rb   r   rc   r   )rL   r&   r   r   )rM   rN   r   r   r   r   rb   r   rc   r   rO   rP   embeddingbags                r*   rQ   zEmbeddingBag.from_pretrained  st    > ~~1$ 	CB	C$%%
d1 3#
% 17J)r+   )
NrR   FmeanFNFNNNrS   )NN)TNrR   Frr   FFN)rT   rU   rV   rW   rX   rY   rZ   r   r[   r\   r   r]   r!   r$   r0   r>   rI   r^   rQ   r_   r`   s   @r*   r   r      s   KZ$M uoN
IL# fkW[QU$(	7s 73 7#E?7>C7^b77-17DLVDT7 '+7 BJ#7 .2	7<+7
#1V #1hv.> #1[cdj[k #1w} #1JJC J bfJO^c59- - -PXY^P_ -#(-CG-!-48-W[- &.c]- ?M- -r+   )typingr   r"   r   torch.nn.parameterr   moduler    r	   r<   r
   __all__r   r   rE   r+   r*   <module>rx      sA       (   
'S Sld6 dr+   